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CHAPTER I

INTRODUCTION

In this thesis we will treat the initial boundary value problem
for incompletely parabolic systems of partial differential equations.

Incompletely parabolic systems are of the form

W) P(x,t,D) A(x,t,D) W) flkx,t)
(1.2) > = : + . s
W/ B(x,t,D) Qi 5, Di . f‘r\x,t)

such that

o = P(x,t,D)u

is a second order Petrovskii parabolic system, and

e Q{x,t,D)v

is a first order hyperbolic system. (The precise definitions will be
given in Chapter II.) The operators A(x,t,D) and B(x,t,D) can be

arbitrary first order linear differential operators, where

e S D
== -lg)%,...,-lgx—n' .

Incompletely parabolic systems arise in many applications, we

present the following two examples.




1) Coupled Sound and Heat Flow (Richtmyer (17, p. 170]).

3
5 k
de - ) _ou ]
ot “X? ¥ ox
(
= N N
1 |
;_‘E = gllsy } ;_.e_. P % ;_! {
e 3 § ¢ x |
ot ox ox
dv _ du 1
St ¢ 5

For the higher dimensional equations see Pyasta [ 14, p. 210].

2) Viscous Shallow Water Flow.

u, = g - qu. = =D
t X
N = RS = TRV = R - q
t T
< E - OV - uq - VO
wt @ux y +X \

This second example is a non-linear systemj; however we will consider

only linear systems.

The literature on incompletely parabolic systems 1is sparse. The
first example above, due to Richtmyer [ 19 ], appears to have stimulated
the subsequent research. Novik [13] and Lions and Raviart [ 9] proved
existence theorems for the Cauchy problem using very different methods.
Novik used finite difference approximations to prove the existence of a
solution while Lions and Raviart used functional analytic methods. The
name "incompletely parabolic" comes from the paper by Belov and Yanenko

[ 3], in which they discuss the smoothness of the solution.




In all of the above, the leading symbol of the parabolic
operator P(x,t,D) was assumed to be negative definite and the leading
symbol of Q(x,t,D) was taken to be symmetric.

Difference schemes for Example 1 are discussed by Richtmyer [17]
(see also Richtmyer and Morton [17], and Morimoto [11]), and difference
schemes for other systems are given by Pyasta [1%] and Lions and
Raviart [ 9].

It appears that the initial boundary value problem has not
been treated in any generality before. The results of Lions ard
Raviart [ 9] can be applied to coercive boundary conditionr. We know
of no other treatment of the initial boundary value problem for incom-
pletely parabolic systems. Our approach is similar to that which Kreiss
used for strictly hyperbolic systems [ 6]. In unpublished work, Kreiss
has applied the same method to parabolic equations.

We have chosen to consider only problems that are well-posed in
the L2 norm for several reasons. The first reason is that the determination
of whether or not the problem is well-posed in the L2 norm depends only
on the highest order terms. Moreover, one need only consider the frozen
coefficient problems, that is, the constant coefficient problems that
arise by fixing the values of the coefficients at each point in the domain
being considered.

Secondly, in computing approximate solutions to partial differ-

ential equations by means of finite difference schemes, it is important

5 B ke

to establish the stability of the method. (Stability is the exact

e

H
i
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analogue of well-posedness.) For variable coefficient difference schemes
there appears to be no general approach to stability apart from examining
the frozen coefficient problem. But this approach can not be valid for the
difference equations unless it also applies to the differential eguations.
[t is important therefore to distinguish that class of partial differ-
entizl emuations for which such an approach is valid.

The chief results of this thesis are stated in Theorems 6.1 and
©.2. They show that one can determine whether an initial boundary value
problem is well-posed by checking certain algebraic conditions at each
voundary point. These algebraic conditions arise from examining the
frozen coefficient initial boundary value problems for each boundary
point. The necessary and sufficient conditions for constant coefficient
problems on a half-space to be well-posed are stated in Theorems k.5
and 5.1.

We now briefly outline the remaining chapters. In Chapter II
we define most of the terms and notations we will be using in this thesis.

Chapter III deals with the Cauchy problem for incompletely
parabolic systems. We establish an energy inequality and use it to
prove existence and uniqueness of solutions.

The initial boundary value problem on a half-space is the topic
of Chapter IV. We first consider the case with constant coefficients

obtaining necessary and sufficient conditions for the problem to be

well-posed in an L? norm with scaling factors. The scaling factors




T e

are needed to accommodate both the parabolic and hyperbolic behavior.
Then using a ;grding inequality we extend the results to variable
coefficient problems on a half-space.

In Chapter V we introduce another scaling of the Lg norm which

is also appropriate for incompletely parabolic systems on a half-space.

Many results are analogous to those of Chapter IV and are stated without
proof. In addition we show the relation between the various scalings.
For the sake of completeness we also state the necessary and sufficient
conditions for the parabolic and hyperbolic initial boundary value

problems on a half-space to be well-posed.

The initial boundary value problem on bounded smooth domains is
treated in Chapter VI. We apply the results of the Cauchy and half-plane

initial boundary value problems to obtain a sufficient condition for well-

posedness.

In Chapter VII we present a theory of pseudo-differential operators
that depend on a parameter. We then construct the symmetrizer R(w,s) i
which was used in Chapter IV. R{w,s) is a pseudo-differential operator
with the parameter Re(s). We then prove analogues of Ggrding's
inequality. These are used in Chapter IV to extend the results for

constant coefficient equations to those with variable coefficients.

In an appendix we give several examples to illustrate the method

presented in this thesis. g

>
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CHAPTER II
PRELIMINARIES
his chapter we define many of the terms and the notations
will be used. In the first chapter we defined incompletely parabolic

systems in terms of Petrovskii parabolic systems and hyperbolic systems.

We now state the definitions.

Definition 2.1. If P(x,t,D) is a second order linear differential

is Petrovskii parabolic if the eigenvalues A of P(x,t,¢t) satisfy

for some positive constants « and £ independent of (x,t).

Definition 2.2. If @(x,t,D) 1is a first order linear differential

operator, then the system

n
N
~—

v, = Qlx,t,D)v + £(x,t)

L

is hyperbolic if the following hold.




The eigenvalues of Qlx,t,E) are purely imaginary.

There is a continuous matrix valued function T(x,t,&)

z o
Pl 5,8 Qle,t 8 Tl k)

is diagonal and

for some constant

T(x,t,6) is as differentiable in (x,t) as i Qi Bk )

Equation (2.3) is strictly hyperbolic if all eigenvalues of
leading symbol of Q(x,t,&) are distinet for £ # 0.
For a vector a, a' will denote the transpose and the conjugate
- t
transpose will be denoted a , similarly for a matrix A, A~ will be

its conjugate transpose. If (Pl -1 is an n-tuple of matrices and

n
w € R, then

= Sy n g . "
Similarly for vectors x, € € R, x*E will be the standard inner product.

- v n ¥ ” 2 t
For vectors u and v in (T the inner product will be written u'v

and the norm will be given by

lul = (utu)l/2

For a matrix A the norm will be

A = sup |Aul .
u|:l




f -
Ef. Fn 3 and u and Vv are measurable vector functions

N

on 2 X [0,0), we define

(u,v) = [ [ e ulx,t)" vix,t) dx dt
s 0 N
and, similarly,
L (>
r =Nt \ G
(u,v)q 30 = e wist) wiost) dx dt -
Tl e S
The corresponding norms are ‘u']_] . and lu!',] 3o Tespectively.
PR » Ol

We shall use 5?w“,’r
382

to denote the norm of the function w in the
Sobolev space H' (2). The subscripts "n" and "r" on the norms have
quite different meanings, but this should cause no confusion. We will
drop the "0" and "30" whenever it is clear from the context what
is.
When 0 = R" we have the relation
o«

= [ [ lal, 7+ 11)]% @ ar
~ n

R

ulf

where

Y § ] . "
i,s) = (gv)"“*l)/e [ e X yx,t) ax dt .

(0] ]Rn

For £ € 1°( |2 dx.

R+) we define |[[f]|, by Hf”f=.f [f(x)
0




-

Definition 2.3. We say a function f(x) tends to a constant as fxl » 0
¥

if
1) there is a constant f_  such that f(x) - f as x| - o

. X < S
2 Dfix) - 0 as |x§ > o for a1l @ > @,

Definition 2.4. We say a function h(w,s) has parabolic homogeneity

of degree » if for p > 0

of nlw,s) .

1]

2
h(pw,p"s)

)

Similarly h(w,s) has hyperbolic homogeneity of degree r if

/ 3¢
h(pw,ps) = p~ h(w,s)
An algebraic lemma we will need several times is
Lerma 2.1. If A is an a X a matrix and B is a b X b matrix, then
the equation

2.5 AX - XB =C

has a unique solution if and only if no eigenvalue of A 1is also an
eigenvalue of B. Moreover if & is the minimum distance between the
eigenvalues of A and B, we have
atb-1
~=1 + B
(2-6) o < o7 | Rl B el

for some constant k.




Proof. By Schur's Theorem (Jacobson [ 4], page 193 there are orthogonal

matrices 0, and O, such that
[=

e, ~ %
A = JlAOl and B = 02802
are lower and upper triangular,respectively.
Then (2.5) becomes
2.7) AY - YB =C
where VY = oixo2 and C = oicoe. Note that [|Y|| = [[X| and |IC]| = [c|.

We can rewrite (2.7) as

. L a .y, *+ Z y..b
ik j<1 ij7 jk j<k

S
@
1
o

<
(o8
e
1]
o
I

ijbjk .

Equation (2.8) is a recursive formula for the elements of Y in the order

V11 Y1p? Vo170 Y332 Vopr o0 5 Yy

Equation (2.6) follows easily from (2.8). We also have that if ggi = gkk
for some indices i and k, we lack either existence or uniqueness.

This proves the lemma.

10




CHAPTER III

THE CAUCHY PROBLEM FOR INCOMPLETELY PARABOLIC SYSTEMS

We now consider the Cauchy Problem for incompletely parabolic
systems and give some conditions for its well-posedness.

We rewrite (1.1) as

n =
3.1) = L ] + L +
(3.1 TN Pij\x,t)u - Ak(x,t)v Fl(x,t)
i,j=0 5 (5 k=0 k
{
| n A
v, = L Bk\x,t)ux + 2 Qk(x,t)v + F_(x,t)
5 k=0 k k=0 k
vhere w = (u,v)', woxx) = w(x,0) and u and v are vectors of dimension ]

4 P and g, respectively. i
The lower order terms in (1.1) have been dropped in (3.1) for

simplicity, but it is easily seen that they do not affect the subsequent

results.

We seek conditions under which (3.1) is well-posed .

Definition 3.1. The system (3.1) is well-posed if there are constants

C i t = ! S
° and n,, independent of w, and F (Fl’F2> such that for n > n,

(3.2) Iwlls < c gl + II7I3) - |

Equation (3.1) is said to be ill-posed if it is not well-posed.




We consider (3.1) in relation to the two systems

e ) g, = & P, f(x,th
t i,3=0 33 XlYJ
n
(3.4) ¥ = Z Qk(x,t)v
k=0

;
i

We have assumed that (3.4) is hyperbolic, we now show that such an

assumption is necessary.

Theorem 3.1. If (3.1) has constant coefficients, a necessary condition

for (3.1) to be well-posed is that the eigenvalues of

n
(3.5) e Qb

e

be purely imaginary.

Proof. We Fourier transform (3.1) in the spatial variables and obtain

: u P(E) 1A% u Fy
% A = A p »

v IBeE iQ-€ s F2
|
: where P(E) = -4 Pijgigj.
1 A well-known necessary condition for well-posedness is that the |
| |
| eigenvalues of ;
‘ P(¢)  1A-g

iB*€ iQ g




have their real parts bounded above for all E. Now let 2 (g) satisfy

A - P(&) -iA-E
(3.6) det =0 .
-iB- € A-iQ-€

If we replace £ by B-lé and A(E) by B-l%'(E,B) then (3.6)

becomes

oA - P(e)  -iplf2

e 50 v - osgee

AE
=2 ) = /
B ( pﬂdet =B ("p@p\?-',e,a) = 0.

llow suppose a root of p(A',t,0) = det(-P(¢)) det (' - iQ¢) had a non-
zero real part. Since A'(-£,0) = -A'(€',0) we may assume

Re Ki(éo,o) Zc > 0.

By restricting B to O <pB < ¢, we obtain

i
Re Xi(éo,ﬁ) 25e>0.
But then ll(B-léo) = 8-1ki(50,8) has arbitrarily large real part as

8 - 0. This shows that (3.1) is ill-posed if (3.5) has roots which are

not imaginary.

Theorem 3.2. If (3.3) is Petrovskii parabolic and (3.4) is hyperbolic,

then (3.1) is well-posed.

13




Proof. Our proof will rely on the theory of pseudo-differential operators.

We define the symbols

1

Plr,t,8) = L Py (x’t)gi% 3

Q(X,tyg) =1 Z O’k(x,t)gk 3

and similarly A(k,t,6) and B(x,t,t). We set H,(x,5,8) = 77 (x,t,8) T(x,t,8).
where T(x,t,t) is as in Definition 2.2, Following Kreiss [ 7], we can

construct a pseudo-differential operator Hl(x,t,g) so that we have

(o) Re H.P < (- 88° + v)I
a e{l_\ﬁg +Y.Il
Re l:2q‘ = Yx{2
(3.8) ¢
b) H, and H, have Hermitian symbols and
-1
< Wy B <
o &0y By 59
\ for some positive constants Cor Yo O

Now for a solution (u,v) to (3.1) we set

u) + (v,H.,v)

E = (u,H 8

L

where the inner product is the usual La inner product on 3Rn+l. We then have

)

E = (43 & (
B, =2 Re{\u,Hlut) + (V,Hgvt)} + (u,Hltu) + (VoHy v
= 2 Re((u,HlPu) + (V,HEQV) - (u,HlAv) + (v,HeBu\

+ (u,HlFl) + (vy,H,F,)} + (u,Hltu) + (v,H.,v).

o'p otV

1h




I

. : Ao : ; . 2
Now using Garding's inequality and (5.b) we can estimate the first two

terms by

CE - 6(Vu,H V),

and the second two terms by

and the last four terms by

cE + |IFJ° .

So we have

(3.9) E, < CE+ P2 - clvul?

and this implies (3.2).

We shall need two other energy inequalities that are proved in
a similar way.
: 2 - 2 2 » 2
(3.10) ljw(t)[]r + (f) (el att < CT,r(”WO”r+£ ”F(t')”r at*)

for all ¢ € [0,T] and all integers r.

(3.11) Ilwll‘f] + Iqullf, < C<IIwOII§ - Re(w,HF) )

where




n+l \)

In (%.10) the norms are those of the Sobolev space Hr(m

We now give a short proof for the existence of a solution for

the Cauchy problem (3.1). We modify the proof given in Taylor [19)

for symmetric hyperbolic systems.

For convenience we will write w = (u,v)' ¢ H

r B i
ueH0) and veHd2() et B = B (R®Y) ang T = i,

2 \
If w, € H' and F € L°([0,T],H") then the Cauchy
EL, 1

Theorem 3.3.
problem (3.,1) has a solution w(t) such that w¢& Lg([O,T],H

and w< ¢([o,T],8"7)

Proof.
We abbreviate (3.1) by
(3.12) "= K(x,t,D)w + F.

&

for kel l,

IA

+
Let J‘(x) be a Friedrichs mollifier on ZRn

and consider the equation

n

(3.13 wy = KJ w+F

K (x,t,D)w + F

16




_a

at t = 0, Equation (3.13) is an ordinary differential

with w = W

equation on Hr. Using the standard Picard iteration procedure, we obtain

a solution w of (3.13) and w < C([0,T],H"). Let

Hlkx,t,g) 0

Hix,t,8) =

0 M?(x,t,g)

[t was shown in the proof of Theorem 3.2, that

H{x,t,8) Klx,t,8) + K (x,t,8) H )
Hix,t,8) Kix,t,¢&) K (E,6,8 0 Hix, 6

2
= + 0
Clg C0 U

< Tyt st )
0 CO
It then follows easily that
2
N 1
¢ Sy T Em M
HK + K H< I

0 ol
0

where the constants Ci and cé are independent of <. This implies,

t
(3.14) @I+ 1 o (602 ase
0

t
= Cr,T(”wo”f« ) {) [F (e Hli dt')

for all « € (0,1].

17




Eouation (%.14) implies that {w } is a bounded subset of

Ld([O,T],Hr*l’r). It follows from (3.13) that {w£} is a bounded
subset of LE\[Q,f],Hr-l’r—l). Integrating we see that
(715} fwl}o<_.< 1 1is an equicontinuous family in C([C,T],Hr_l’r-l).

Equation (3.14) also implies that

(3.16) (w (t is a bounded subset of H' for each

We now apply Rellich's compactness theorem (Agmon [ 11, page EOff)

with Ascoli's theorem to obtain: 1) a subsequence {w k]:=1 of

{w(]0<,A( , vhere ¢ >0 as k- ®, and 2) a function w € C([O,T],Hr-l)
such thaé_ wik(t) converges to w(t) in #1(q) uniformly in . on
each bounded open set 0 E:Iin+l. Therefore w(t) satisfies (3.12)

weakly.

We have shown that we have a solution w € C([O,T],Hr-l) for

each W, € H and F ¢ L°([0,T],H). We now show that w ¢ c([0,T],H%).

+
let w. . € BT ™ and P, € I°([o,7],8°
0,J J

and F in L2([O,T],Hr) respectively. Then as above we obtain

e converge to w, in il

Wy € ¢(fo,T1,u%)

which solves

W, = Kw+F, with w() =w. . .
v J \ 0,3

18




Using the energy inequality (3.10) we see that wj is a Cauchy
sequence in C([O,T],Hr) which is complete. It follows from unique-
ness that wj must converge to w. We see that w - C({O,T),Hr\,

and the energy inequality (3.10) shows w < LQ([O,T],Hr+l’r¥.

19




CHAPTER IV

THE INITTAL BOUNDARY VALUE PROBLEM ON A HALF-SPACE

We will now consider the initial boundary value problem for the
system (1.1) on a half-space. We begin by considering the case with
constant coefficients and without lower order terms. Later we extend

this to systems with variable coefficients and lower order terms.

L.1. Preliminaries

We rewrite (1.1) as

n n
(b.1) B, = Ba  # k§1 Plkuka + j,izl szkuyjyk
n
+ Ao¥, * kél Akvyk - Fl(x,y,t)
n n
¥ BouX - kgl Bkuyk + QOVk + kgl kayk + Fe(x,y,t)

on the region x > 0, y € IRn, t > 0. On the boundary x = O, we impose

the boundary conditions

(4.2) T,u_+ LT..u +8v-=g (y,t)
o™y 2ky, 1 1

Tu +Sv = ge(y,t)

20




where gy and g, are vectors of dimensions bl and bg, respectively.

We will also assume

4.3) w=0. and w=0 &t & =10.
As in Chapter I, we will assume that the system

n n

/

: VA + ' P
t O % k=1 1k XV e 3,k=1 2Jk yjyk

is Petrovskii parabolic and we make the further assumption that the system

n
(h.h) Fa = Qﬁvx e R ty

is strictly hyperbolic.
Recall that u has dimension p and v has dimension q.

Without loss of generality we may assume that Qp is diagonal

and

9 0

- 1y
(L.5) Q, = > Q@ <0, @y > O,
+
0 QO
- M - -

where QO and Q@ are diagonal matrices of dimension g X q and

q+ X q+, respectively. In particular, note that we are assuming that
the boundary is non-characteristic.
We begin to analyze the system (L.1) by Fourier transforming

in the y variables and Laplace transforming in the t variable. Set

21




!-".Yl"l)/g f ‘rm e-St - iy

flx,0,8) = (on e wix,y,t) dy dt

En 0

'his transforms (4.1) to an ordinary differential equation with the
independent variable x. In what follows we shall not write the "7
on the transformed dependent variables, this abuse of notation should
cause no difficulty.

We can express the resulting ordinary differential equation as

a first order system by defining an additional dependent variable

a = ( = PélACv)iug + s>-l/d s
glso let @ = \ug + s)l/c. We then have
u 0] 0 0 u
L.6) 2 = P;lks = Pe(wﬂo'l -iPC')lpl-u 0 u
.- -1
" _l%lgg.w -G, B,° M(w,s) v
=1
0 0 -PC AO u
| o © \ipg)lpl'wpélAO + 1a-w)o™t a
-1 -1
0 0 QO BOPO AO v,
0
o, . |
& g
+ PO Fl )
-1
_QO Fg




where M(_(h,s‘ = Q(-)l(s - iQ-q;),

a
P (@) = P . W®
2jk K
} k=1 e
The boundary conditions at x = O become
-1 .
2 (o e 5 IR0 it ( u
e 1 '
\L-7) J
v
g ot L
\
i 1
= +

In both (4.6) and (L.7) the second term on the right-hand side is a

lower order term and does not affect the following analysis.

Letting w = (u,u,v)'

(4.8) w, = N,s)w + F(x.w,s)

T (w,s)w = g(w,s) S b

where we have dropped the lower order terms, and
1

g = (g0 850"

B

we can rewrite (4.6) and (4.7) as

\C,-POlFl~




We now pause in our analysis to consider what we mean by
"well-posed". Perhaps the most natural definition for the well-posedness
of the system (L.1-L.3) is:

b

Definition 4.2. The initial boundary value problem (4.1-4.3) is well-

posed if there are constants 7., and CQ such that for any solution

we have
L. 9) R e Y AP 1
"
< C, \léél ?‘ + jg li + “E-'l'rf‘ + 21"?1’\
for all 1z ng. (Recaly | =l ema || = -] o o=m

lowever, this definition is inadequate for our analysis via
equation (4.5). Tt will become apparent later that the natural definition

of "well-posed" for the system (4.8) is the following.

Definition k.3. The system (4.%) is O-well-posed if there are constants

"N

N, and C, such that for any L°(R,) solution of (4.5) with n > o»

)

we have

2
z

(4.10) Re o([[ul]® + [52) + allv® + [ul® + [3]° « |v|f
. + +

&
< C,(lel® + [7lI)

iy
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:
3
3

This then gives us an alternate definition for the well-posedness

P

of (4.1-4.3). First,let £ and Z be the pseudo-differential operators

=

with symbols 0 = (W + s\l/‘ and o> =

(w2 - s)'l/g, respectively.
(We will give a short discussion of pseudo-differential operators that
will be sufficient for our needs in Chapter VII.) In analogy to

Definition 4.3 we make the following definition.

Definition 4.4. The initial boundary value problem (4.1-4.3) is O-well-

posed if there are constants T and CO such that for any solution we

have
\ < 'l | 2 'r-'l ? ‘r
(4.11) Re(u,@u)q + Re 1X,3 ux)n + qllvllc + |u[n + |5 uygq |v]
RTINS - TN B R
< CoUE gy 7+ gyl + IETFIG + MIE,l

for all 7 > Mo
The problem will be said to be 0-ill-posed if it is not
0-well-posed.

We then have the following two theorems.

Theorem 4.1l. The initial boundary value problem (4.1-4.3) is O-well-

posed if and only if the system (4.%) is 0-well-posed.

Theorem 4.2. If the initial boundary value problem (4.1-4.3) is

0-well-posed then it is well-posed.

We will give the proof of Theorem 4.1 later.

r
25




Proof of Theorem 4.2.
Equation (4.9) follows from (4.11) since
V1 Il < Re(u,Zu) 0 < Refu_,=tu )
= Lo B =2 x N’
1 1/2 |
and = gli,} <q ' lell. .
j
4.2. The matrix N(,s) |
t is essential for the following analysis that we examine the 1
matrix NW,s) closely. We write
r o) >
1.11( 8 0
k.12) N(w,s) = :
I\iglkw,s) N (@,s)
where
0 o)
Nll(ca,s) = 3 3
s - P _(w)
P 2 Y ey O
0 o I
: e |
N2l(“‘:s) = (-1QO]B-<D,-QO BOO) 2
and

Ny, (@,5) = M,s) = %1(5 - igqw) .

26
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Nll is a 2p X 2p matrix and NE? is a q X q matrix, and so the eigen-
values of N(w,s) are precisely those of Nll and NEE' We also note
the homogeneity properties of the components of N. Nll and NEl

have parabolic homogeneity and N22 has hyperbolic homogeneity, i.e.

for p >0
(%.13) N.. (o0,0%s) = oN. . (,5)
= 2 ’ e 2
N . (ow 2a) = oN (w,s)
‘51 st D-gl »S/,
and

(pw,ps) = N, (w,s) .

oD 20

We now examine the eigenvalues of [N,

Theorem 4. 3. The eigenvalues A of Nll(w,s) are the roots of

(b,1k) det(PO}.z - iFl-ro')\+ Pe(w) =8 =0

For Re s > -afn ; (w,s) ¥ O, there are p eigenvalues with positive

real parts and p with negative real parts. (al is a positive

&

constant less than «, (Definition 2.1).) Moreover, for Re s 2 -

there is a positive constant ¢ such that

(4.15) IrRe 2| > ¢ ® + |s

e 4

P s SNt ——

I R & ain b




Proof. Equation (4.14) follows easily from the definition of N

a

o I g
2 e : -
For Re s > -qfﬂ , (w,s) # 0, if ? were pure imaginary we would have,
by Definition 2.1,

P

2
~L® < Re 8

2
| i

(i 2
Re s < - al|A]l” +w7) -
which is a contradiction. So ReX®w,s) 1is not zero. For w = Dy -Be & > Dy

2 (0,s) satisfies
det.\PO)\e -s8) =0,
which shows that the A's are the eigenvalues of + vﬂg Pal/g and hence split
into two groups of p elements each. One group contains the eigenvalues
1 with positive real parts,and the other those with negative real parts.

1

inally for w? 5 f

5 : 2 |
s! =1, Re s > —aiw ,» we have |Re Al e>0

by compactness. Then (4.15) follows by homogeneity.
: We have an analogous theorem for N22.

Theorem 4.4. For Re s > 0, the eigenvalues of Ngg(w’S) split into

twe groups. There are q eigenvalues M_with Re p < O and q*

eigenvalues My with Re M =

o

Proof. If p 1is an eigenvalue of Nee(w,sL

b 0 =det(up - N_.W,s)) = det Q(-)l det(s - QoM - 1Qw) .

22
J So if u 1is pure imaginary, s must also be pure imaginary, hence ’
“ Re s % O implies Re p # . Por Re 8 >0 and =0, u is an

eigenvalue of sQ61 and by (L.5) the theorem follows easily.

Q
O
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4.3. The Boundary Conditions

From the above we see that the space of L?(E?+) solutions
of the differential equation (4.2) has dimension p + q when Re s = O.
So, it is necessary to give at least p + q' boundary conditions to
insure uniqueness of the solution. If more than p + g~ boundary conditions
are given we cannot insure existence, Because of this we make the

following assumption.

Assumption 4.1. We assume that there are precisely p + q boundary

conditions, i.e.

- b a
b1 i b2 p q .

Moreover, we assume that bl is minimal 1in the sense that any linear
combination of the rows of (4.2) does not diminish the number of rows
containing derivatives.

The assumpiion on the minimality of b, 1is inserted since adding

ik
one of the first b rows to all the rows would make a 0-well-posed f

i
problem become 0-ill-posed. This would be tantamount to replacing the
2 ) -1 2
. % .
term Igglq in (4.11) by the stronger | ge(q
We now define the eigensolutions of the system (4.8) and of :
(4.1-4.3),
Given any vector v of dimension q, we can decompose it as

- + - -
v=1(v,v ) where v consists of the first gq components and v+

consists of the last q+ components.




Definition 4.5. (u,v.) is an eigensolution of parabolic type at

0

(w,s) if it satisfies:

(4.16) a) ‘;u,vo) £ 0,
b) (w,s) # 0, Re s >0,

¢) su="Pu _ + iP +au_+ P_(0)y,

Q" xx B
+
a) Vo = O
e) Ty + AT ‘0w = 0
Tu+Svo=O at x=0,
‘ ) ueF(R,) and v, cr?
Definition 4.6. (u,v) is an eigensolution of hyperbolic type at

(w,s) if it satisfies

(4.17) a) (u,v) # 0,
b) w#0, Res >0,

! ¢) 0=Pm _+ 1P 'wu+P2(U~‘)u,

£ 0" xx i
; = 1 . + i L4
. da) sv Byu, + iBewu + Qv+ iQuev ,
+ 1 & =
e) Tyu, + 11,700 = O

TME Sy =0 at =0
f) For Res > 0, u and v are in L2(1R+), and for
Re s = 0, u is L2(]R+) and v is the limit as

i Re s » 0 of L2(1R+) solutions to d).

| We now state the main theorem of this chapter.




Theorem 4.5. The initial boundary value problem (4.1-4.3) is o-well-

posed if and only if it has no eigensolutions of either parabolic or

hyperbolic type.

Theorem 4.5 follows immediately from Theorem 4.1 and the ”

following theorem.

Theorem 4.4. The system (4.8) is o-well-posed if and only if it has no

eigensolutions of either parabolic or hyperbolic type.

k.4, The Proof of Theorem 4.6

Before we give the proof of Theorem 4.6 we introduce some

notation. By Theorems 4.3 and 4.4 we have for Re s > O

op+ » ,
T L B s,s) @ E (,s

L / + . . .
where E (w,s) (resp. E (w,s)) 1is the span of the generalized eigen-
vectors of N(w,s) whose eigenvalues have negative (resp. positive)

+
real parts. For w € mEP 9 we write

2 4+
w=w Ws) +w (0,s)
where

wt(w,s) € E-(w,s)

'he proof of Theorem L.( depends heavily on the following theorem

whose proof is given in Chapter VII.

DL




Theorem 4.7. For the system (4.8) there exists a Hermitian matrix

R{w,s) satisfying the following:

%.18) ) ke R(w,s) N(w,s) > d(w,s) where
g
OIEP &
dlw,s) = 3
0 11

L Re (@° + s)l/2.

S

w R, s)w (’|w+\w,s)|2 = |w'(w,s)|2),

o’

z ¢

where 8% 1is a positive constant which may be taken
arbitrarily large, cy > O.
¢) R(,s) is a C® function of (w,s) for w € R™P, Re s > 0.
d) The norm of R(®W,s) 1is bounded independently of (w,s).
e) The lower left q X 2p submatrix of Re RN is zero for

Is] > e, lof, |s| > ¢

| =

The proof of Theorem L4.£€.

We begin by showing that the nonexistence of eigensolutions
implies that (4.8) is well-posed. Then we show that the existence of
eigensolutions implies that (4.8) is 0-ill-posed.

Applying the results of Theorem 4.7 we have

(4.19) o, (il + &%) + nllv? < Re(w,Rvw),

= Re(w,wa)

s T -
= wa(x=o) Re (W,RF)

&
-2 aa 12 2
< e ([w|P=n W' 1%) + Wl + cllFl?

+ - BRe(w,RF)_

(>
0

o8




Mo e ol e S 5 S ok idgaist - T iiiiidatas

' i
2
:
¥ We now write the boundary condition of (4.8) as !
T (w,s W = gl@,s) - T (@,s)w,
L 4
and show that we have the estimate |
(&.20) lw™| <. |7 @,s)w” ]| l
> =0 .
i
for some constant CO and Re s =1 > T)O for some no. i
Suppose that (4.20) fails, then there is a sequence !
a 3
/ w0 2
(48] el 1 ?
(k.21) {0 H o with Re s, >,

: 2 \
and solutions Wy, € LR +‘ to

W = N ,s Jw
vyx - 88,

Vv

with |w. (x =0)| =1 and |7 (u‘v,sv)wvl > 0. There are two cases

to consider. First suppose that for the sequence (4.21),

(L.22)

wv|/|svl =8>

e ey

for some constant a. In this case we normalize as follows:

2 2,1
o, = (o |2 + |s [P)2,

! = g P WY =y /0 t = xp
Sy 8y/Pys v v/v’ b o B

w o\x',n' s')::w A1 T
il e A VEAY

33




Now since [w¢]2 5 [s;l2 =1 and [wV(O)l = 1 there is a sub-

sequence such that (w¢,s;) and wV(O) converge to (w',s') and W

Without loss of generality we can assume that the original sequence

converges. In terms of the normalized quantities we have

3] 1 ( IR ,
r = — = — N (W = —=—— NN U.)' ¢ ) -
SO Gl SR N ( v’sv)wv - h(ov NN
v v v
We now consider the components of N(w,s).
I ' [ T t -1 ! T liyt
=N w = w',P - N @®',0
ey B0y v’ovsv) r'ZLl( 9Py 8y yy et

and similarly for Nﬁl, and
A

e N ' 1 = P | 1 ! 1)
5 Ngg(pﬁbv’ovsv) Néz(»v,sv)~a N, («,s") .
So that in the limit
w? )
N,, @*,0) 0

NEl(w',oJ N, (',s") i ]

and the boundary condition becomes




T il

2 ¥ :
Also note that \m'l > %/ Y+a 0. But these are precisely the con-

ditions for (u,v) to be an eigensolution of hyperbolic type at (w',s
/ N \
where w., = (U,u,v/.
\9

The second case to consider is when

L.23) ov > 0 as Vo ®
»)V
We normalize as follows
2 2 1/2
o = (lo |2 + s M2,
v v v
(o]
s!' = s_/p° e =y YD xt = xP x" = xls
v ’v/ i v v/ v’ Y2 XiSgl.

A . \
Again, we can assume that (wb,s;\ and wv(O) converge

and w.. We can also assume that Sv/lsvl converges to s . We

0
then have
4y Yy
=N (w*,s?
o Iy @posy) |
v/ x' Gy
and =
w s o) A%
o= Y Y v, + —= N_. (@,s") "
V,X 22 |\ Is,, d s, v s, = Il A *
v
Now
/ ™ 1/2
i ik g v (
= — > O
:V‘ SV SV

and (uv, uv\' is a bounded function, so in the limit v(x") satisfies

N

W




o W"‘“"ZI'Z’""’{WZ | ——. —}
P

=

= N ( 1" - b P )
L ugz\u,s v QO sy .
|
. . . - + ~ A\ 1
But this implies Vg = 0. We also have
u
0 0
=N ,w',s")
~ QG 4 ~
u u
Gzt 0

These conditions are precisely those for (uo\x'ﬁ,v03 to be an eigen-
solution of parabolic type at (w',s').

Now any sequence (4.21) has a subsequence satisfying either
(4.22) or (4.23) and hence generates an eigensolution of either hyper-
bolic or parabolic type. ©So from the non-existence of eigensolutions
an estimate of the form (4.20) holds for some constants o and To°
Applying (4.20) to (4.19) we have

o, (S + 515+ nlivfF

< 2clg - 1 @,sl' (% - (lwTIB + sl 1P) + Wi + cfF)
, : =D
< c(lel® + IF)2) - |wm)® - W' % (s - Cy) + @

fow for n sufficiently large and & taken appropriately, we obtain

36
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This is equivalent to (4.10).

the problem is O-well-posed.

We now show that the

()

\&F. ¢

3) is 0-ill-posed.

Definition 4.7. For any

generalized eigenvectors of

negative real part.

1

Assume that W,V is an

Let,

WA\X) =

(4.24) W =

with the boundary condition

matrix

imilarly fo

So if there are no eigensolutions

existence of eigensolutions implies that

let E (X) be the span of the

X whose

corresponding eigenvalues have




wi0) = 0 .

¥

Call the matrix in (4.24) N (@_,s From the definition of

)
o’

an eigensolution of the hyperbolic type we have

0

- *
w(0) € E (N w@,sc)) if Re 5q > e .
and
(0) € lM1L’F+w s, + ¢€)) Lf Re 5. =0
wil0 € ;o o (N ()’A‘O y X I a': = L} o
=0
We can assume |w(0)| = 1.
Now consider the equation ‘
3 n \ by
w’x = u(owo, oS, + nw
V.. ( n)
Nll\ﬂbo, pso £ 0
— W,
g : &
R 1) N (00, Ps, + n) |
i
J

where 7N =0 if Re sO > 0 and is chosen positive otherwise.

low

E (N(ow

- -/1
0’ OSO P 7])) = E (6 N (pw

and

-




N(®y, ps, + n) is an analytic perturbation of N (& _,s

Following Kato [ 5 ], we can choose

) \ e ’ \
WL \[' € E \JJ\GL(V; oS + 7]):

such that

0O /7 \
w (0) - w(0) as B~ o0«

Moreover, we have

Thus we have solutions w* to (4.8) at (u,s) with Re s arbitrarily

large such that F =0 and as p -, [w(0)] »1 and |g°| 0. This
shows (L4.8) to be o-ill-posed.

Now assume that (u,vo) is an eigensolution of parabolic type

at (mo, So ). Let

u = (u, ux/cr) where o= (. + s \l/‘,?
then U satisfies.

59
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s, o

e e

and
u(o) € ET(N. . (@ )iz
1 (N5 @ys80)
First assume s, £0. Let = o, s = DQS, + T where 7
¥ 9 V)
is as before. Consider the solutions to
; L rirle o
w = N®&,s)w
2 = N(,s)
with
wP0) « ET(N(w,s)) .
Since
AR
N (w S 0
ll( 0’ 5o ﬂ/p )

" - - 2\ sy b -2
Ny, (@5 8, + 7/6%) ol.gekuo/p, 5 n/07c)

we see that

ET(N(@,8)) > ET(N,, @,s,)) ® B (I, (0,5,))

as o »® . So we can choose w' (0) such that w°(0) - (3(0),v.) as

0
0 -5,
The boundary condition then satisfies
T (w,s) w(0) = g° 50 as 0 5 ®
In the case sO =0, let s = 05/2 71 and we obtain a similar result.

This implies that (4.5) is g-ill=-posed.
What we have now shown is that (L.&) is o=-ill-posed if and only
if there are no eigensolutions of either hyperbolic or parabolic type.

This proves Theorem L.0.

Lo

|
|
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4.5. The Proof of Theorem L.1

Assume that (4.8) is o-well-posed and let (u,v) be a solution

to (4.1-4.%). Then their transforms satisfy (4.6), so we have

Re G(Hu[i - W; - quﬂE**]u'g"(EfQ + l&]g
" ~ o ~ o ~ :/\ A
I < Cllo™ g, + 7P vy [P+1g, 1F + IF + N (@,8)v]f%)

where Nl(w,33v is the second term on the right-hand side of (L.6).

e ~ ( =1 -1 T
Blnce w= (o + P A v)o and ||V, (@,s)]| < C, we have

M-I R -172 S22 -17 2 102 luE
Re o\‘iu[‘++ :!0 ux;[+-C?!0 V"I+)+T]“V"‘!++ lu[ + |0 ux!d_cxc vi®+ v l

~
=

- -1 2 S i~ B o S R T ~ R
< po(ld g, | o™y *tggl + o F1H++-HF2H+ + Cilvl[S) - {

¥
!
: - - n
Now |U| 5 <n l/d so we have, for n large enough, that
Re oljufZ + Re c'li;uxgyf+ viE ¢ ul® + Io_lux|2 v v]? i
el 12, 1 By iie™ls 12, 1o 42y
< c5lio g, 1% + |y 17+ o™ R I + IIF IS

By Parseval's relation we have (L.11l) which shows (4.1-k.3) is g-well-posed.
Now suppose (4.5) is g=ill-posed. Then as shown in the proof of

Theorem 4.6, for any ® - O there is a solution w to (4.8) at (@ ,s ) with
)

)

1 g

(L.25) lw(o)| = 1, F =0

| Re s, =71, le

0




s g

By considering the addition of the lower order terms in (4.£) we can

obtain LCLP.+) solutions to

s =Py +iP =g + P (@ )ﬁ + A v + iA-w v
( 0 L 0% e 0 O x
sv=Bu +iBwu+ Qv + iQwy
( 0'x 0 0 * 2

=
=
+
-
A
E
15
+
U
<
|I
(1=]]

(=

—
o
+
(¢5]
<
I
(YR}

Equation (4.25) is satisfied with

& -1- 2 = 0 B
lgl® = 16775, |° + [g, 1" < 5° -
We now construct a solution to (4.1-4.3) as follows. Choose ¢ > O and
o(y) satisfying
”@” =Ly
and
@) =0 if |lo-w]:c.
0 -
Let
: . st
ulx,y,t) = ulx) oly) (e -
, X 8,0
vix,yst) = ¥(x) oly) (¢ ¥ - 1)

Lo
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Then (u,v) satisfies (L.2) and (4.3) with

where

e- ¥ o) iw-w )T davu(o) (e © - 1)

Also (u,v) satisfies (4.1) with

ity " \ 7 ol g = - \ " it 7
Fi 6%t = '\“\[!'l"“ w) u (x) + (P (@ )-P_(@))u(x)+ iA- (@ _ —)¥(x
A = \ &
+ s ulx) pw)
s
~ A\ X My (& :rl w*A—dv"U\Xv . W W I'vix }\e =1 )+ ViX
& 8

Now choose 1 N, = Re s, and set

Then

o=l 12 3

g ‘vyfl_w,\ e T i 1

and we have the following estimates, here o, = (.06 + s

c|s,|
§ { \ "']." O
gl n - W‘ﬂ‘” o.o gl

I+ RO + —
'!] =




.

5 1715 2

_cfam Ul ¢ V1B + s

rJ

Now qg(n) - as 1 - y We see that we can violate (4.11l) by choosing
small enough and 7 close enough to no.
So we have shown that if (4.8) is 0-ill-posed so is (4.1-4.3).

This completes the proof of Theorem L.1.

L.6. Variable Coefficients and Lower Order Terms.

We now extend the above results to systems with variable

coefficients and lower order terms. Specifically we consider

n n :
(L.26) w =P lytla ¢ L B o{xywtlu + L B Xyt i
IR =3 = ik R Y59k a
$
+ & Eystiv. + L& (xaretiv
0 X -1 k yk
o
* C ygtla, * 4 € Ax.yitlu
- & k=1 - Tk
i Cll(X,y,t)u it Clgkx,y,t)v i Fl\x,y,t)
n n
v, = B.(x,yt)la, + 2 B (x;5t)a + @ Eysthv. + 2 Q (zy5t)v
i 0 X k-1 k Vi 0 b k=1 K ¥y

\ «
F Cgl(x,y,t,u + C

2

Exx,y,wv - Eﬁexx,y,w ;

The boundary conditions at x = O are




~
—

We assume that all the coefficient matrices are functions
and tend to constant values as their arguments tend to infinity.

Define

e

Then (4.2¢) can be written as

o = N(x,y,t,Dy,Dt,wa + NO\x,y,t,Dy,Dt,q)w +F ,

where H&x,y,t,Dy,Dt,q‘ is a pseudo-differential operator whose symbol is
0 Y 0
—iang-w leBOc Qél(s - 10w

and No(x,y,t,Dy,Dt,ﬂ) is a bounded pseudo-differential operator.
§ =N + 1T where T is the dual Fourier wvariable of *.
As we will show in Chapter VII, we can construct a pseudo-differ-
ential operator R(y,t,Dy,Dt,n) whose symbol satisfies (4.18) for
each value of (y,t). We will also prove the following analogue of

Ggrding's inequality.
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Theorem 4.8. If the symbol R{y,t,»,T,n) satisfies (4.1%) for each

value of (y,t), then we can modify R so that for n - n,

: ) Ygin T | 42
i) R Rliw ) 2 Zu) + R z )+ v
(4.2 Re (w,Rllw N2 Re (u,Zu 3 Pe\ux, u 1 lJV.q

And moreover, if for each \y,t\ the corresponding frozen coefficient

problem of (L.2¢) is 0-well-posed, then

12)

+ |g2‘q ¥ e twl®

2
N 2

h p . S
4.29) Re (w, :wh]_ -cl\]i gll

for some positive constants 5 and cg.
By the frozen coefficient problem of (4.26) at (y,t) we mean

the system

= P + Z + X
Y = Tolx Pliuxyi PEjkuyiyy

= o + b
vy = Bgu, * Bkuyk v, * kayk

Zr =
1y l2kuyk &

Tu + Sv

1

&

where the coefficients all are held constant at their values at

(0,y,t). We also need to consider the frozen, coefficient problem

obtained letting !y! t B =




Using the above we have

= P
R b3 } R 5 ) y 1l J
Re (u,Zu R Ae(ux, u )y *+ livilg

< Re(w, RNw)

= F.e(w,wa}_‘ - Re (w,RI'.’Ow)q = Fie(w,RF\/q
< - re (wrw) + Wl 127 2+ I
< cl(li—l(gl ¥ Slv)‘i - fgg[i) + C”wﬂi % Hz'lplji . ”FE”i
e (1272 12+ lgy D) + 157 Ry} + E,S + cllz™half o 1270wl + i)
We use
Wl < P+ 1zt B + fivif?)
Gl 2T 7l
< :ig \Reku,iu\q + Re(ux,i-lux)n) + Cuvui
and
=l + 127l < aTH(ulf - IID)
Then for 5 sufficiently large we have for all n > qo
(4.30) Fe(u,Zu‘q + Re(ux,z-lux)n + WHVHi + |u|i + lg-luxfi + lvli
< c(lzg 12 + lgy 2 + 270w IS + I5,1E)

We have proved:

Theorem 4.9. If for each frozen coefficient problem of (4.2() there are
rno eigensolutions of either parabolic or hyperbolic type, then (L.26) is

O-well-posed.
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CHAPTER V

ANOTHER DEFINITION OF WELL-POSEDNESS

5.1. Btrong 0-Well-posedness.

In this chapter we consider an alternate definition of well-
posedness for the equations (k.1-4.3).

To motivate the discussion, we consider the heat equation on a

: - n+l
smooth, bounded domain 2 € R
(5 1) 'Llf = An = £ on N X [O,rr)
u =0 at £t =0

There are two natural boundary conditions that are considered.

The Dirichlet boundary condition
(5.2) U= g on 00 X [0,m)
and the Neumann boundary condition

(5.3) vur=g on O X [0ym)

For the Neumann problem one can estimate the gradient of the

solution on {Q, for example,

(5.4) hnuu:l’; f vl lul? < clel® + fel?)

A

But for the Dirichlet problem one cannot estimate the gradient of the




. " s T " G g R
Ll i st TS e i s - 4 4 o

)

-
solution in terms of the L norms of the data.

One possible estimate for the Dirichlet problem is

0.2 | 2 1 2 Wity

.5 YT lalls + vl (o ,‘(‘ | + 4P )

\ P, 1 | n 'n, 1 n - g n ! i
where Qf S:TT c 0, and C depends on the distance between 2' and

(Equation (5.5) follows from our results of Chapter VI, and (5.k4)
follows from the divergence theorem and the theorem of the trace.)

The estimates we obtained in Chapter IV arose from treating the
boundary conditions as Dirichlet-type conditions. Now we examine when
one can get stronger estimates involving the gradient up to the boundary.
To do this we proceed as in Chapter IV, up to the point where we converted
the system of ordinary differential equations in x to a first order

o

system. Then we introduce as our new dependent variable

au U.l
W = uX = ul .
v v

Neglecting lower order terms we obtain the following system analogous

to (4.8).

Ny, (@,s) Ny, (@,s) 0
(5.6) . w o+ -P(')lFl
0 Z\IQ? W, s ) —-.,‘(-\1172
= N'(w,8) + F' ,

1 i A L i

e a3

T o AP S




with the boundary condition

2l 158 dc-l {1 S g
2 1 T 1
w =
C 0 O £
where
0
Higksz‘ = - i 1
P [& N ( a ) £DT A\ o (
O O 22\“’}» Ll 5 g [\. w

We see that we obtain a system similar to €. 8); except that now
N' (@,s) is upper block triangular instead of lower block triangular as
was NW,s), and similarly for the boundary operators.

We define o-well-posedness for (5.7) as we did for (4.8), that

is, (5.6) is o-well-posed if there are constants C. and 1, such that
< v
for 7 > 1,
(5.7) Re o([ju 2 + IS 1°) + ﬂ”vig b |wl?
\Joe C\| l & ll" I + |
< cyUel® + 7 1%)

Applying this definition to (4.1-4.3) and using our new normal-

ization, we have

Definition 5.1. The initial boundary value problem (4.1-%.3) is strongly

g-well-posed if there are constants 15 and CO such that
(e ¢ . 2 L/2 2 2
(5.8) Re(u,ZISIu)q r Re(Vu,Z\u)n - q!}v![q + |s| /u1'] + IWIW
2 2 2, e 12
< Colley Iy + ey I + M7y 15 + H7,15)
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¥
H
¥
We have used 1e inequality
s
&
. S e 2 e L c
S | Vv C = \/ + $
to replace
e (X 1 elu Jl,u
g N X XM
; $
D:f
| o
elu,=|s|u + Re(Vu,&2A)_ .

s the nseudo-differential operator whose symbol is s.

A AR Y T

We now define two more types of eigensolutions.

Definition 5.2. u,v.) is a strong eigensolution of parabolic Type

Sy

e) su= Pu + 1P sty *+ P \®)u ,
XX X &
d v, = O,
v

[0}
3
o
.
9}
<
<
o 2
<
;
i
-

(\

el T )
f 1




¢e)] 0=Bm + 1P oy + P (@u + Ay + if-ov,

0 xx 1 X
d) sv=Qv + iQwv,
5 s
el T.w '+ 1T sdig ek S
i 2 34
ov = 0 at x = 0,

= SU e \ = L
f) For Re s O, v is in L (R ), and for Re s = 0 v is
is the limit of L (R,) solutions of d) as Re s — O.

i)
ol

u is in L°(R ).
Analogous to Theorem 4.5, we have

Theorem 5.1. The initial boundary value problem (4.1-4.3) is strongly
o-well-posed if and only if it has no strong eigensolutions of either

parabolic or hyperbolic type.

The proof of Theorem 5.1 is analogous to that of Theorem 4.5,
p

so we will omit it.

The next theorem expresses some relations between the two types
of well-posedness considered so far and b,, which is the number of
"N

boundary conditions involving derivatives of u, (see Assumption 4.1).

Theorem 5.2. Consider the initial boundary value problem (4.1-k.3).
a) If bl p, it is always o-ill-posed.
Bl T by < p, it is always strongly o-ill-posed.

c) If bl = p, the following three statements are eguivalent.




1) The problem is o-well-posed.
2) The problem is strongly o-well-posed.

3) The following two initial boundary value problems are

well-posed.
= \ r - ST
tHe i) W, = B e LP % ZP 1 +
) t 0 xx 1k Xy, ejk ¥ =¥, :
T U )3 LT = =0 £t t =
‘lby + ."’l"“( : = g‘l L3 ) 0 avt )
===l
v, = Q. t 2Q v+ I
5.4 k,yk 2
v = 2 v =0 at Tt =«

We point out that the two systems in (5.11) are a special case
of (4.1-k.3) in which all the coupling terms vanish. For the proof of
Theorem 5.2, we shall regard (5.11) as a special case of (4L.1-4.3) and
"well-posed" for (5.11) means o-well-posed. After the proof we shall

comment on the well-posedness of each of the systems of (5.11)

separately.

Proof of a) and b)

R o bl then q_ b, hence we can find an eigensolution of
arabolic type at any (®,s), by choosing u = O. For then, we need
J b

only solve

[his means we have less than q conditions on the 1  non-zer

components of Vi and there is always a non-trivial solution.
)




there is always a strong eigensolution of hyperbolic

type. If we set v = 0, we must solve

Pu + iP cwy + P_(@lu = C
0 xx T X 2

Ty + iT 0y =0 for uwe LC(R ).
1% 2 : e

But there are less than p boundary conditions and the solution space
of the diffeerential equation is of dimension p; so there is always a
non-trivial solution.

Part ¢) of Theorem 5.2 is implied by the following two propositions.

Proposition 5.1. If bl = p, the following three statements are

equivalent.
1) There are no strong eigensolutions of parabolic type for (4.1-4.3).
2) There are no eigensolutions of parabolic type for (4.1-L.3).

3) There are no eigensolutions of parabolic type for (5.11).

Proposition 5.2. If bl = p, the following three statements are equivalent.

1) There are no strong eigensolutions of hyperbolic type for (4.1-4.3).
2) There are no eigensolutions of hyperbolic type for (4.1-4.3).
2) There are no eigensolutions of hyperbolic type for (5.11).

~

Proof of Proposition 5.1.

The boundary operators, in each case, map the p+q- dimensional

space of solutions of

H . = y = ?
%%x+1%fmx+\%@ﬂ-shl—m u‘L\R+)

|
|

el Lol e




o

. *q T . . 1 4 2 " - <
into Ip * . The condition b, =P s equivalent to each of ti
following statements.

1) For strong eigensolutions of parabolic type for (4.1-L.3), the

boundary operator is block v»pper triangular.
For eigensolutions of parabolic type for (4.1-k.3), the boundary
operator is block lower triangular.
2]  For eigensolutions of parabolic type for (5.11), the boundary
operator is block diagonal.
In each case the two blocks on the main diagonal are represented by
T.u, + iT,*@u and Sv,. The nonexistence of eigensolutions says that

the boundary operator is nonsingular. This is then equivalent to each

of the main diagonal blocks being nonsingular. This proves Proposition

The proof of Proposition 5.2 is similar to the above and will

not be given.

5.2. Parabolic and Hyperbolic Systems

The following theorems for the initial boundary value problem
for parabolic and hyperbolic systems are contained in the preceding

work. We state them here for the sake of completeness.

Theorem 5.3. The parabolic initial boundary value problem on }ﬁ E




podidoe.

n n

ol = Pyl we 2iml oy ¥+ L + Fx,y,t)

t Oxxk_llk K leJkyyk

¥ )

T ou_ + T, u = g (y,
175 sl 2k Yy 1

Tu:ge(y,t) gt =10

w = 0 at t =0

is well-posed if and only if there are no nontrivial Lg(]R +\ solutions
to the following ordinary differential equation in R _

For (@,s) # 0, and Re s - O:

= 25 5 )
sfi POﬁxx + 1Pl wﬁx + P2 (w)a

Tlux = 15[‘2 [

i
O

4

1l
(®)]

If it is well-posed, we have for 0 > Mo

-1 2 -1 2
b e + |2
Re (u, U)ﬂ + R (ux,z ux)n + ‘u|n | uxln

I2 |2 % Z-l..

<
c (|L I |g2 %

Also if T = 0O, we have

1/2 2 <o 2 2,
Re(u,ilslu)Tl - Re(Vu,ZVu)q + |]s] |,1 '\u‘ﬂ O(Igl|n + UFH,]'-
We assume in the above that there are precisely p boundary

conditions, where p is the dimension of u.

The above condition for well-posedness is essentially that given

v -
by Ladyzenskaja [ & ].




Theorem 5.4 (Kreiss [ 6], Ralston [15]). The strictly hyperbolic
1

+
initial boundary value problem on E?

n

v, = Qv + L Qv + F(x,y,t)
: X g=1 k

Sv = g at x=0
v=2~0 at t =0

is well-posed if and only if the ordinary differential equation on R _

7 ~ . P

sV = Q¥ + iQ-wy
*0'x

Sr =0

)

iy 2 v )
has no nontrivial L (R i solutions for Re s > O, and for Re s = 0O,

there are no Lg(m‘+? solutions v to
(s + elv = Qv * i@y

such that

Sv -0 and v AO 88 € — 0,

If it well-posed, we have the estimate

Holi2 2 2 . 12 "
AR + v < oo el « 112, nz

lo'

It is possible to generalize the results of Section 1 by
: L2y : . i i 5
decomposing u &as (u ,u in which the estimates on u are of the
2 3 "
strong type and those on u are of the nonstrong type. However this

requires that the operator P(D) decomposes in an appropriate fashion.

Since we have not restricted P(D) in any way beyond the parabolicit; i

assumption, the generalization does not seem appropriate here.
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CHAPTER VI

THE INITTAL BOUNDARY VALUE PROBLEM FOR SMOCTH BOUNDED DOMAINS

We now consider the initial boundary value problem for incom-

pletely parabolic systems. We rewrite (1.1) as

P(z,t,D) A2 T, D) u
(6.1) + Flz,t)
B(z,t,D) )

Q(Z:5:D) v

= n+l :
for 2z € QCcR D

o.

We have the boundary conditions

5.2) Plz",t,D)a + S(z*,t)v = glz*,t)
for z' € 02, t > 0, and initial data
6.3) B = 0y v = 0 bt =

The system
u, = P(z,t,D)u

is a second order Petrovskii parabolic system, and the system

v, = Q(z,t,D)v

is a first order strictly hyperbolic system

Alz,t,D), B{z,t,D)
T(z',4t,D)

are first order differential operators.

and

All the coefficients

5},‘)




0 ¥
are assumed to be C and tend to constants as t — . We also assume

that @ 1is a bounded open set with ¢* boundary.

Definition 6.1. The frozen coefficient initial boundary value problem

for (6.1-6.3) at (z';t. ), = 2} € o » £y 2z 0, is the initial boundary

value problem

,D) A\z,,J ,D) u :
+ Flx,y,t)
\z',t,,b kab,:O,D) v

with boundary conditions

T\z;,tO,D)u ¥ glztst v = gle,yst)

o"o

and initial conditions u =0, v=0 at t = 0. This is defined on the

half-space Iii+lkzb\ where the ray x > 0, y = 0 1is the inward normal
ray to 00 at zé and the space X = 0 1is the tangent n-space to
at zé.

The limiting values of the coefficients as t —» x must also be
considered, so we will allow t = o as well. We set f€+ = R s U {=].

We now show that by examining the frozen coefficient problems
via Theorem 4.5 we can decide if the initial boundary value problem

(.1-6.3) is well-posed.

Theorem 6.1. If the frozen coefficient initial boundary value problem
at (z',t ) is 9-well-posed for each (z',t) € 30X R, then the initial

boundary value problem (6.1-6.3) is well-posed.
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We take a finite open covering {U¥} of (, and a partition of

. . O
unity {9~} such that
- (94 eAlf
(6.4) a) supt ¢ c U
R T 2
b) @ \Z)’ =1

a
¢) If UNndu# § then there is a C° map ¥:U% 5 R suen

Ef Ll
that (% N da) c RE.

K o) \ o A . A
Set f(z,t) = ¢*(z) f(z,t) for any function f(z,t). Then we have

{ / y C
u Plz,&,0) Bz, 5.D) 0
(6.5) =
a e D) o~ 3 @
v t Bz, 6,0 QA% 5D v
u
v

N

+ 7 (z,t)

where D is a first order differential operator. When UY N 20 £ ¢
o

we have the boundary conditions

’ (o 5 = o ( o
Tiz' 8,0l + S(2htlv” = g (z,t) = fT\z',t)u 3

There are now two cases to consider, depending on whether U N d0 = ¢

or not. In the case where UY N 80 = @, we treat (£.5) as a Cauchy

(04

problem for (u”’,v"). Notice that we can alter the coefficients on
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. e |
the exterior of U4 so that they tend to constants as t + [z| — .

Then from (3.11) we have

; AT I..Qne o2
(6.6) (s + |lv )+ {[-ut

| ! b

< [IF¥1E + c (s vY5) + c(llulf + |l )

= ! I n i a i Y
n,U™ n,u
Y Lo
-/ Relw™, :P{ujq

i

The last term is estimated as follows. If R(z,t,D :

4]
o

bounded pseudo-differential operator, then

! \ C 4
v RD. ui.= \@mu,; RD.  w)
G G z; M
= oy -
= \u, nDz u )q + \u,R%)
i

where R' 1is a bounded pseudo-differential operator. So

uf o+ efu®

n, 0%

r Y |
ku”,RDzu) <

Then using (£.6) we have, for mn large enough,

(6.7) W2+ [su¥© < ¢ P2 & w2 )
(6.7 Ll IS < cUIF ,w;q =
,U

llow consider the case where U N 0 # ¢. We change coordinates

on % via the map W&, et




and

u=u 2 : v =V e
|,x( IL
J )
. . . ) . n
Then, letting \x,y’ be the new coordinates, x = 0, y € R, we have
the initial boundary value problem
u ?\x,y,t,D) ﬁ\x,y,z,D\ u
'/’ \’ =
v X §(X7Y)t;D ) 5“\X,j,',t,D\’ v
P(x,y,t,D) A(x,y,t) u
+ % §\X:YJt>
B(x,y,t) Q(x,y,t) v

and the boundary conditions

Tl(y,t)ﬁx + 2 'rgk&y,t)ﬁy + 8, (y,t)v = g, (y,t) + T(y,t)u

T(y,t)u + S(y,t)v = ég(y,t\ 7

We can extend u, Vv, F, and ¥ Dby defining them to be zero
outside V<. Similarly for the coefficients in the second operator on
the right. The coefficients of the first operator on the right and
n+l

the boundary condition coefficients can be extended to all of R

n 2 T
and R, respectively, so that they tend to constants at infinity,

€2




all our assumptions are satisfied, and the initial boundary value
problem remains 0O-well-posed.
since (0.8) is 0-well-posed we have the following estimate on  Ti.

from (L4.11)

6.9} Re | + Re (u L=y L allslE + 1wl2
= Relu, 2u elu , & Jy;q WnVHq leq
LA N A F e T e N i
= . '
g q’VJ N,V
&R lg - « lT’
+ '] ';1,] = Pe(w, R fu),l]

£«

To estimate the last term we use the following inequality. If
KXy s 5 D 5D ,n) is a bounded pseudo-differential operator (with parameter 7
J y 1

! N i
with support in V°, then

(W, 6= ) < c (W + fluf® )
iy T n, v
and
- -1 \ Yool C -1
(W;u-‘: ux'q = (q A le: GZ ux\n
(o s=Ll= ek ( (CE
= (w,GZ uX>W + (w,G'S (qz o )xu)n
<ol |+ =710
.V
[} o - - -
<cwl® _+n 1/2 Re(u, I 5 ux‘q‘
T):VO' % -
-} |2 - 2 13
Also, |z lw' < l|w'; « So, for n sufficiently large, we have ;

| S0
']7\](1 '];Vn

from the above estimates that




e

ls r . r r 's
: \ n=ne -2 | =12 =12 2 | LA
.1 v fhaflo + v+ W cllgls + : w T e A
n 1 e n 1 T | pr
15 LER
: { s
n 1 supt ¢ we have
. ~ > -
(7 11 /_'] e (1‘155 P q‘_ ’VIC . "‘,fLwlc
; ‘m, & N>t N, @
e L |.r | 1 ‘,(: | = f‘
sH i = ok g ~ .t |lw = fw\v N :
i 15 ¢ n, LE 1,

Surming (6.11) and (6.7) over all o and using (6.4) we

obtain, for n sufficiently large,

n

_ = (2 Sl
6:12 ) (Wil . VL |-l
12 va el o+ lw‘ﬂﬂv [l-ull

wvhere Q' c Q' € and Q' is open.

This proves Theorem 6.1.
Similarly we can prove,
Theorem 6.2. If the frozen coefficient initial boundary value problem

for (z2',t) is strongly o-well-posed at each boundary point

(z',t) € 9a X iik, then we have the following estimate

\"'15] TIHWHf] oF ”U“i‘ i ‘W|:l 30 7 -’,f\!g:;; .+ T jf] )
i 2 A s e y§

The necessary and sufficient conditions for the frozen coefficient

problem to be strongly o-well-posed have been given in Theorem 5.1.

i




We should point out that the system

(6.1k ) v, = Qlz,t,D)v - 3

can satisfy a weaker assumption than strict hyperbolicity and still have the

results of this chapter hold. The estimates for the solution of (6.1-6.3
in the interior of require only that (6.1L4) be hyperbolic. On the

boundary of ), the estimates depend on the existence of the matrix R\W,s

of Theorem 4.7. Agranovich [ 2], Taniguchi [18],
Gy 49 . . . . . Y =y S

[ 10, page.lf] have all given conditions implying the existence of 1 S

which are weaker than strict hyperbolicity. If (6.14) is hyperbolic on

bove conditions at each point of

29X R and satisfies one of the a
302 X R then Theorems 6.1 and ©e2 remain valid.
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PSEUDO-DIFFERENTTAL OPERATORS WITH PARAMETER

In this chapter we present a theory of pseudo-differential
operators that depend upon a parameter. Our theory will be analogous
to the usual theory of pseudo-differential operators and many results
for the operators with parameter will follow immediately from the usual
theory. Our presentation will follow Taylor [19], also see lirenberg
[12].

We shall then prove Theorem 4.7 by constructing the pseudo-
differential operator R(w,r,n) which depends on the parameter 7.

Finally, we use our theory to prove analogues of G8rding's

inequality. These inequalities are used to prove Theorem 4.E.

7.1. Definitions and Formulae

Let N Dbe an interval in R_, N will be the set of parameters.

n

For & € R and 1 € N, define
% S-S ¥~
(&;7) - O . .
BroaAk i 8 - o ; . s
Definition 7.1. For my p€ R, 0<p <1, Sp is the set of

e

n

X 1
I\

L R o O \ % g, e
peEC (R X R i) with the property that for any multi-indices

and B there is a constant C_ o such that
sl
| OB ¥l i . m-;‘r'
DUIEpZ€an) ]l < C (B .
Z E = e




wm . -
If € S we say is a symbol with parameter of order m and
P o 5

We note that the usual theory of pseudo-differential operators
corresponds to choosing N = (qcl, WD # 0. Forus N will be of the
form [qo,w’, Ny > 0. We shall allow p(z,€,m) to be a matrix, and
in this case we shall say p € Jp? if each element of p is in Spi

The Fourier transform of uf(z) will be

a(e) = (2?)—n/2 i e_lg‘z ulz) dz .

]Rn

For two vector-valued functions ulz), v(z) we define

(w,v) = [ u(2)’ v(z) dz
=
= [ ale)® o) at .
]Fn

In this chapter we define the norms fufr by

lul =1 la(e)® (&,m ae .
]Pn

Note that for r 0 and 10 0

lul , < 1" lul

.

0

Definition 7.2. If 7p(z,&,n) € Sp: then we define the pseudo-differ-

ential operator p(z,D,n) by

>

e




plz,D,n) ulz) = {Qv'>°n/2 [ plz,E,m) 278 u(e) at .
an

We then write pkz,D,q) € PSpkm,o3 and p(z,é,n) is the symbol of

plz,D,n).
Notice that a differential operator of order m 1is in
PSp(m,1).
Ef p(z,D,*}X € Eﬁp\m,p) then, for each fixed non-zero value
of n€N, plz,D;,m) can be considered as a pseudo-differential operator

according to the usual theory. Therefore, all of the elementary
properties of pseudo-differential operators carry over to pseudo-differ-
ential operators with parameter. In particular, the asymptotic expan-
cion formulae for adjoints and products are exactly the same.

For convenience we collect here the formulae we will need.

/ m
Ef pkz,&,q) Spp s {pwxz;gﬂ)}

m- 1&10 (\','I

o> 0 is a set of symbols such

that p_(z,&,n) € Spe is a multi-index), and

( 3 m-Np
PKZ,vEJ’]) = 2 P \Z,E,'ﬂ) € SpQ
o< ol <n @

for every N > 0O, then we write

plz,8,0) ~ L p,\z:8:n)
VY;’O

and call it an asymptotic expansion for p(z,&,n).

»*

P (z,D,n) 1is the adjoint of P(z,D,n) defined by




* E t \
(Pu)vadz = [ u(Pv)dz .

Its symbol is given by

— * X |'," 3 Ol D/ +
(7-2) = e D I = DgD; E‘\,z,g,n)

If P(z,D,n) € EFp(ml,n) and Q(z,D,n) ¢ PSplm_,p), then the
&
\

composition P-Q(z,D,n) is in PSp{m, + m_,p) and its symbol is
P 5 Jh

i
given by
EN v Llol 1 .« S
2"2,’\275:71\‘ ~L 1' ney L‘gp"\zyqu) D”‘..\Z,g,‘]\.
o= 0 Yo Z
|
In our applications of this theory we will take 1z = (%), |
|
|
E = (w,r\, and the functions we deal with will be zero for t < O. !

For P(y,t,Dy,D+,n), a pseudo-differential operator with |

parameter, we have

t -nt 2
”eﬂ P(Y)t,Dy)Dt;']\(e : u)”q

r -nt 2
= [ [ PG00 W™ uly,t)) Fay at
e o y ot
R
and
: /=Nt
}’K.‘,f’tJDy)D,’r])(\e n U(y"‘ ))
o0
=[ [ Ply,t,w,1,n) G, n + i7) do a7 .
-00 n

R




~

. u . 5 25 o +1 T . Y
u denotes the Fourier transform of u in y and the Laplace transform

in t, the dual variables being «® and 0 + iT, respectively.
Brding's i it i11 need to use
In the proof of Garding's inequality we wi ne ; s

double symbols.

m, sm
Definition 7.3. p(ﬁe,z,él,n) € Spp & if for all multi-indices
0 : & i tant £
ts 81, and. 62 here is a constant CQ’Bl’eg such tha
P !
B B m_-0(B, | m -plg, |

!DEDC(DI / Y A 2 2 i 3

P P T P(E, 2,8 )] = cd:ﬁl:ﬂg<§2’q) (€M) .
Definition 7.4. The operator p(D,z,D,n) is defined by

A

(P(D,z,D,q3u‘(§2‘

Ll iz« (€ -E.)
(ar) n/2 I p(&e,z,glm)e 2 4 ulk

P(D,z,D,n) can be thought of as first performing the gl

differentiation, then the 2z multiplication, and finally the €_
=

differentiation.

It can be shown that P(D,z,D,n) is a pseudo-differential

operator in PSp(ml+m2,o)with symbol plz,E,n) where

(F.2) p(z,€,m) ~ L i’a] L,Dq D, plE, ,z,€,n)
a> 0 Gr 208 -




1

g e \“L\yt)

We now give a few examples that will be used later. Let

then

a0 = l._u? + i1 + q)l/e € S 1

S
P EEh o

e
n ¢ opl.

We will also need the following lemma.

Lerma 7.1.
for p>'1

m 0O and

also, for

o 2 2 I \
If p(z,u,T,n‘ satisfies plz,m,p T, p ) = pmp\z,?,T,q‘

and |©|® + |t] + 1 large, then plz,w,7,7) ¢ in/g if

( e A
p\z5"*':TyT]) € Op 1?2 1 om0

induction, we see that

Qm-— lfi|'218| D‘:YDBPKZ’w’T,’]\ ’

o 2L
(Dwaip)(Z,iﬂ‘,p T,0°1) = w-T

@ + |1| + q large

\1/2 _

@ + lol + Y8 < (gmy < @B 1] 2 0)

We then have

il ) e ) /o
[D“Dﬁ p(z,0,1,7) < ¢ \“? v 5} + q\&m || 2] /x'
w t = R

The lemma follows easily.

i i A B . s i

i
3
H



.2. The Construction of Rly,t,w,s)

We now prove Theorem 4.7 by constructing the pseudo-differential
P b p
operator R(y,t,w,s). We let z = (y,7), ¢ = (@,7) and 0. = Re o,

he theorem we shall prove is actually stronger than Theorem 4.7.

e - . : - =
Theorem (.l. There exists a hermitian symbol R(z,E,N) ¢ opl/q
=SS C Lt o

satisfying the following:

(7.3) a) H(z,&,1) = Re R(z,&,n) N(z,€,1) >2L(€,m) where

, GQIEP 0
A I\g’q\ =
(0] 131
t s * 2 = 2
o) W' Rw = e (Olw (6,07 - |w(g,n)[%)
where ° 1is a positive constant which may be taken

arbitrarily large and o > Q.

(@]
4
=
wd
"

i X
where Rll is 2p X 2p and

(@)
: i X q then R £ O &
R 18 4 1 then R and o1 € bpl/E and

22 LE
0 4
R22 = Spl.
H T{t
a) If H= L 21?) is a decomposition as in (¢) then
HEl 1%2

i ;
Hll and H21 (= Spi/g, H22 € bpl, and hgl\z,g,q\ =0

Ior 1T 4+ > 5 and T + 7 ¢, for some constants
- [ =




We will need the following lemma in the proof of Theorem 7.1.

Lemma T.2. Given the lower triangular k X k matrix A= \ai:\ such
that Re a5 f 0, there exists a real diagonal matrix D such that
e 1
Re DA >~ =DA_ > O
=t Bk
where A. is the diagonal matrix diag(Re a sz Re i Ve
e Aj 1e diag B g( 11° ’ Kk
: X k : : o TS
Proof. For u € @ and any diagonal matrix D such that ukd
we have
" > k iGl
Re u DAu = L d. Re a,. luil + L L 4, el a, u,)
i=1 ~ i=l j=1 e
k 5
. 2 4., Re a,.lu.|
228 i 3% S
i=1
: . 2
k i-1 (i-1)d. |a. .| 5 G Bea 3
- _,\’ ______D___l__._}dl_— Iu:’ + i - L ]‘u” ~
i-1 j=1 e e
X K k (j-1d.la_. [
W , o ¥ e P : g i
= di Re aii u,| -~ 4L u. | 25 e
i=1 i=1 J=itl : i

50 if we choose dk = sgn(Re akk)’ and then having chosen d., for

1 88t

1 1 k  (§-1)a,
Ay Y, ——ila,|
i Re a.. . ; e &,. 1%
ii j=i+l Jd “

then D = diag(dl,...,dk) satisfies the condition stated in the

lemma.




n

Theorem T7.l. Fix 2z at some value z_j; we now construct

roof of

\

,Esm) = R(E,m). Set p= /g).“}— s E' = BE, Nt = BN, and

s 5'77]':!‘\ = f“lz‘ng\'v
R{E',n',B) will be a hermitian matrix satisfying
G,' I (
=
. 1 Re RN' > ( 5
o ( ntT
i -
1
: - TG 1/2
where 0! = gog_ = Re{w'™ + ipt' + gn') iz s
i - + = 2y
) w Bw = el |w grn & = lw KET s 80T ) where
w—(E',n',B) i YREL ST 5 (see Definition 4.7
and © may be taken arbitrarily large.
We will construct R(E',n",B in a neighborhood of each point

€:sn' B~ where

|§bi" + '!’]"]C = ¥ ( '].L/']" <1l.

For B. 0 we construct R(E',n',f as follows. Since the eigen-
values of N(&',n',8) are bounded away from the imaginary axis
heorems 4.3 and 4.4), there is a transformation U(E',n',p' whic

is analytic in a neighborhood of (E',n .(, such that

U(E',*\',S\,;‘I'(E,',*]',(%\ U \\F,',-']',v"" '-'(.i'f]”:l)




F

N' is lower triangular and the eigenvalues of II' (resp. N!) have

negative (resp. positiveW real parts.

T.2 so that

Now we choose D and D according to Lemma

. N* > D ‘]:1) A
Re D N, Iobi e
Set
t D 0
) . LG5, =
: 5')']':&) = U (et ,nf B) UCET 11" 5B /.
0 5D

Noting that

W

Uw =
s

W

we see that (7.ka) and (7.4b) are satisfied.
In the case where B,= 0, 7. # 0, @ £ 0, we again have the
J 1) |9
igenvalues of N'(E&',n',0) bounded away from the imaginary axis
O =] o
Theorem 4.3). Moreover N'(€',n',8) can be expressed as an analytic
function of RS R in a neighborhood of (gl,qﬁ,”‘. We ther
struct £';n',8) as above.
e now construct RI(&',n',8) in a neighborhood of
2 ¥
’ (0,7'), ¢ . Note that N' (&',n',8) = N_ (E',7'). Let
22 22 -

&7’ be the matrix as constructed by Kreiss [6] (see also

Ralston [15]), satisfying

—~J
n

9
-




At @' =0, g =0 both I and N are zero, butl
> ll r(fl b
s T iT"Uﬁ is non-singular. So for ' and B sufficientl;
g - T
i e <7 - \ >
211l the matrix Y(E',n',8) defined by
{ Vi = ! = = R "'|
T 22 2221

well-defined by Lemma 2.1. Moreover, Y\

Set R,y (E',1',p) = Y(&',0",p)

We now need to construct rllki';W'

of &' = {0,7'), g = 0. To do this it is
matrix Dlw,s) for all (w,s) # 0, with
(7.8} a) Re D(w,s)lew,s) > UCF?p’
t T g e
b) uDu > cp\“|u | -
, X ooy o :
/e need only consider (®,s) with «  + le |
Diw,s) to all nonzero (®,s) by
2
D(aw,rs) = D(w,s) for
ote that Hll(wys] is analytic in FRe s _

‘he eigenvalues of Nll@“,s)

s0 we can construct DW,s)

Rl s ———— e

v R = PR v
and fp Foy

B/

Re s 2 O,

locally for each value of

E',n',8) satisfies

in a neighborhood

necessary to construct a

such that

la™12).

- 1 since we can extend
o O «
'(’:
-, W™ By Theorem 4.~

are bounded away from the imaginary axis,

\u,s\,

1, using the techniques describted above.




is compact, we can cover it with a finite number of neighborhoods
N . \ . . - o0
of which D(W,s) is defined. If
partition of unity for the cover we define

X

Dlw,s) = & @ (w,s) wa,s)bf.

s K

o 7y gilin e - " {
that (7.8a and b) are satisfied and that D(w,0)

of (w,s). Note that we do not define D(0,0).

ap (@' ,ps" )

\ .

(6',n",8) 1in a deleted neighborhood of ((0,7'),q
is not defined at g = 0, ®' = C d 1s a positive number
to be determined.

We now check the properties of R.

t
% RENE)
Re (dDNll 0191




oy o adssac: . " - ¢ " g G = 1

M b, e

rom (7.7) we have

and from (7.8)

or d sufficiently large we have (T.4a). Tc check (7.4b) we note

if v 1is an eigenvector of s en
is an eigenvector of WN'. Also,if u is an eigenvector of N!.
i 08 R

u

Vu
is an eigenvector of N', where V 1is defined by

VN!. - N! s
B 22 =80

Since at B = 0, W' = 0 we have N'_ nonsingular and N.!. = W

2z g 1 ?
can solve for V\E',W',Rj in some neighborhood of g = 0, W'

. .

Moreover, from Lemma 2.1,

7.‘}‘ Iiv” <ec ;‘::v‘ | 3!

ife)




1 2
_ u u
. =
(7.10) W= and W = .
o + - . -
v + Vu % + Vu
Then using (7.9),
t ; +12 2 -2 -2 (12 |2
W Rw > co(ﬂ\]u 1+ v [7) = (Ju |® + v 1)) - cot(ful® + |v
J "/
/e + 12 3 | =2 | =12
>ert(3(fa| + v 1€) - (lu v )
it by (7.10) and (7.9)
+12 - 2\ W
lw ] < |u = (1 + Lo I T
P e L e 012) + [vT[5
So, in a suitable neighborhood of B = 0, ®' = 0, we have (7.5b) .

We take especial note that the lower left q X 2p submatrix of

Re RN is zero for |w'| < €, B' < € for some ¢«.

final case to consider is By = 0, W' # 0, yf = 0. By
eorem 4.3, the eigenvalues of Nilxéé,0,0‘ are bounded away from

the imaginary axis. As we have mentioned before, there is a matrix

i(E*,n',R), analytic in a neighborhood of (gg,ﬂ,f\ with




e

'»r]';i'\‘ N"(E',0',B) | Y5 m”

A
N

(E',n",B

N
P
= ENall "
= N M.,

where the eigenvalues of (§',0,0) are those eigenvalues of

ee
N (€',0) which are pure imaginary and the eigenvalues of N! (&',0,

"

are those which are not pure imaginary. Also, N"(€',n',8) is lower

vince the eigenvalues of the upper block are bounded away from
he inary axis, we can construct a matrix h”\gé,p,L so that
{
g1 0 g! e \
Ny 0 3 C _
Re R" =
Ny N !
21 22 7
and
T = | -2
wR'w > e, (Hlw S
in a neighborhood of g = Qy @ = Oy NL = O
vk 0T Ze i :
Let R (E',n') be as constructed by Kreiss [ €] and
Ralston [15], which satisfies
|
0 0 \ ‘
Re R (E',n') N (e',n') > 0 ;,
:
|

.*'
:




and
t50 Fie -2
= (i5 -
VOR VO = CO\.‘VOI 'Vol i
We define R(E&',n',8) by
R 0
1 1 —_ t
RUEY T 763 =1 u.
0 RO

As before, R satisfies (7.4) in some neighborhood of g = 0, ®' = O,
nt = 0.
We now define R(E,n) for all \i,q) as follows. The set

~ n
=

((e*:9%)e0 < p < W'/n,: €% + 9 = 1)

is compact and we can cover it with a finite number of neighborhoods
(U ] on each of which we have constructed R(EY,9',8)- IF (9]

is a C” partition of unity for this covering we define

ﬁ{§',q',5§ = Vk\g';ﬂ'iﬁ) R\E')W'JBXIU
LA K

Then R(&,n) is given by

R(E;W) = ﬁtﬁ&;ﬁﬁ;ﬁ\

where g = (E,n\-l.

e SO N




S o oy o —_ s 1 o' oy -

sy ol e 2 oy gt e

o see that R satisfies ({.3c! we note that for g8

; E¥ S0t LR was constructed to be analytic in (&',n',8! and
|
! ) = \ 2 e
this would imply that R € Sp, . ‘!owever R ,(€',7',p) is not defined
at g =0, &' = (0,7'), and in a neighborhood of this point
- - R ( - ot |
R = dDw',ps'). Therefore R (€,n) = daD(w,s) for |w| < c.ls]|
i | EE ==
3 | | (
. where s : 3 ) { joe g Bar 1 This means
[ where sl > ¢, and D(w,s) ¢ upl/p by Lemma 7.2. This means
4
‘P and so R € S %
N 1 L SRl .
i 11 1/2 P1/o
3 o see that (7.3d) is satisfied we recall that for [o'] A
i tiie lower left g X 2p submatrix of Re RN' was constructed to be
; zero. This means that for
| \ i
I !‘L‘} < &5 |8, 18
, S

the lower left g X 2p submatrix of Re R(E,n) N(E,m) is zero.

[n this way we can construct Riz_,&,n) for every z.+ Moreover

he coefficients of N(z,£,mM) are continuous, so we can use the same

il s

z.,€,m) 1in a whole neighborhood of z.. Since the coefficients

P \ |
of N(z,E,n) tend to constants for large values of lz we can

choose a finite set of points {z 1 and neighborhoods of the point:

b . M . \ = oy . 18 e AT
P}k:l whilch cover  f{z = \g,tliy € B , t = 0. n\zk,g,q satisfies

7.3) with N(z,&,n) for all z ¢ U . If we take (@, )}, to be

s SO

a partition of unity for the covering, then R(z,&,m) can be defined

1 for all values of 2z by

Riz,&,n) Rz, ,8,1) @ (z).

o
|
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et Al Lo
(.3. Garding Inequalities.

In this section we prove two analogues of Egrding's inequality.
We then show how Theorem 4.2 follows from these results. We shall
first do some rearranging of our operators to put them in a more
convenient form. As in the preceding section let z = (y,t), & = (@,7),

and w = (u,v!' where u and v have dimensions 2p and q, respectively.

(Thus u = (u,u)' in the notation of Chapter IV.)

We have
U?Iﬁp C
H(z,&,m) = Re RN > e
0 qiq
Let
5-1/2
0 g)p
/\\i"‘]w =
(=1/2
C (Esm) / :
- ) ' ! GC[?p [
\7.11) HE,m) = A(g,n)  [H(z,E,0) - ¢ A(E,n
0 NI
Then
OO = R : PO
“11 Z58, ) = GC 3111\2;577\ \_‘i\: p;‘/g .
= -1 \ \ 0
‘rPsz,E;ﬂ‘ = <§;"]3 {prkz,ﬁ,‘ - \'“_"] [ bpl 3
and y
. _ -1/ e
'21\2)5;7]) = G() (€,M) ":».,lw,oﬁ,v.\




Now v,»,l‘z.ﬁ,'l'- 0 when W < e (™ + 7 for B e

and for values of (W,T,n) wit A S

O

-' onstruction, H. is the product of symbols in Sp and symbolg
21 1
with parabolic homogeneity. So by lemma 7.2 and (7.12) we see that

|
b/
3
e
Lol
i
o
joh
ta
n
3
=

now state e first Gardi inequality we will need.

hheorem (.2, ¢ e positi emidefinite matrix symbol

\
oy NG 3Rs :’L~Z7§}T‘l

Sy NB 56N :,,,;‘~Z,~E,-:"]‘

-5 . X 7 v = 4 o 43 ~ e it
where i Z3k ) € £ and the other components are in ¢
11\ 355N ‘Pl/,r) P pl’

the operator Glz,D,n) satisfie:

Re(w, G(z,D,n)w) =¢. |u - C

'he decomposition w = (u,v'' ‘orresponds to the matrix decompositior




it e b - i

Proof. Our proof follows Taylor's proof of the sharp Jﬁrding inequality

in [19]. We shall modify the proof by including the parameter and
0
shall proceed as if Glz,E,N) were in 5pl, and then check the

estimate we obtain for © l\z,E,W‘ which is the component not in Spi.

1
We begin by performing a Friedrichs symmetrization of Glz,E,n’.
~ AL 00 s DFL 5 o SR | i
Let qlyu! be an even uﬁkE }  function with support in ju! < 1,
and
2
[ o [ d. =1
Define
¢ &
=i\ . C - & ~ -{n+1 /h
F(€,6,m) = q —*———-jch— {E,M)
(€,
Definition 7.5. The Friedrichs symmetrization of G\z,E,7 is
) a v n( . [ 3
(7.14) S(E,s2,6 sn) = f F(E_ ,C,m) A‘VZ,C,']’ e s C.
£ ib = 1

see that S(D,z,D,n) is a symmetric operator from

Ak (w, S(D,z,D,n)w)
" iz‘é? t A 12'51
= [{(w(g,)e ") S(&,52,8 ,n) (wig, e } dzdg, de
A iz‘§? :
= {rwkggﬁe ;~‘\§q,f,q\dﬁﬂ]v r(ZsCsM
< e

e w&&l)e . F(g,,E,n)de, } dldz

v
O




‘ We must now show that 8(D,z,D,n) is a pseudo-differential

operator.

o ) o O)O
Lemma, 7-2- O\EQ)Z)EI;T] € upl/2

Proof. By induction, it can be seen that

—UNEy ) = (n+1) /L )
E \f-l'_)) DC; l‘\E,C,*]) = <g’-‘) g / ‘1’(1 B Y\g;n) JYqu\.,;\)
{ 15'5'@] D> u

s
| where 2
1 L= (8- (g,my /2
: and ﬂ,i 1 ‘ [\ Ly
. s U-\ G- 5 B-y -5 iai
Yoy B0 € BBy S0y
Now

o -

¢ pPp' S ,z,6 ,n)
§2z§l 2 1)

i = f Dg; F(gg)gxﬂ) DE G\Z,C,ﬂ) Dzl F(El,C;ﬂ)dC s

so by the Schwarz inequality

£F -3 o &
|0 0Py s(e,,2,8,,m)]

52251

O v 2 s 5 2

S eg J DG (e, 6% ac [ID] F(&),8m) 1% ag .
& ' =i

Applying (7.16) we have




O B o )
1S Ppt  sle .2,k 0]
EP z & 2 24

LV /& \
— 0LB,Y 52,']/

which proves the lemma.

: 5 . iy SR : m
We now compare +(z,6,m) and its symmetrization uxgg,z,al,].

By (7.2), 8(&,,2,8;,n) 1is equivalent to

T\Z,é,']\ ~ 4 Ty,v\zyqu\‘
(@) :_O :
where
I .o \
il \3,&,’]) = il(ﬂ S AN S\E ,2,E,n il .
o oh % E 2 -
2 =
3 AT.16)
. 5 ! 1/
ZyEy M) = = e £, M) f ‘fDu ql Dca(z, E /"'] /‘,' -
" gl lal #57
T<Pp
S (£.7) € & -lal/2 d tr b Sk amint b ke G 6]
1C€ 'W;B,Y\°’ ) X pl an che above 1ntegral 1s 1in ‘pl/2
we have
ot A L T 1
(7 X7() [W\Z,E,Wr € 5Py /o
for |w% > 2.
We now consider Tq(z,i,ﬂ‘ for !w? =0 and l.
, ; y F R - R
FO(Z’E)VV r"‘f\z,- € + (E;] / s 0 1 A d »




|
|
|
|

Expanding G by Taylor's formula to second order the linear term
integrates to zero since q(.,) is even. We have :
’;
TO(Z)§)W) = V'I(Z;E;T]) 36 <€;1]/ ) -; ’-JY(Z;E:TI) J
‘ ligl== j
wnere
' 1 el - Y 1/e
E}_’\z,g,']‘ '—;T_J' w a (u) f D Glz,Erut (€,m) " ,m)(1-t) dt dy
0
We now consider the components of T . Since G. . € Sph
| ( ) w 1 S Fog oy | R |
i Z Z | S RSl C S /
| f,‘,ll\ s €51 Jll\ 2 €57 S ST ‘|A . < xH
Y |=2
A
For the other components }ij € Spl ; SO
; E . : =g
lTO IJ\Z,E,]) 'y ‘:Jij(Z)E: “ll 55 C <§;T]§ .
A= .
To consider Tw\z,g,q‘ for %wi = 1, we note that for 7y < B,
gl = 134
1 y
- (1- 3 ipvl)
v (¢,n) € 8 ’
asBsY 1 pl
So W (e,m) € Sp-l, and we need only consider E,m)
BB 1 . L3P




: \ : BLE f
I (z,€,7) iy GVEsm) | DUGLz Ex g (E,m) ; ,M /D g g (p)dp
x !{;!:l LDy Z |
. . ik e . 2o '
plus terms in upl/ﬁ- We again expand by Taylor s formula
Ol ( VL2
D;J\z,§+u (&M / ,n)
- 1 - :
= D6 (z,&,n) + (g,q\l/‘ i DED;1(Z.E ot (6,2 0 at.
L | A

Inserting this in the formula for T (z,£,n), the first term integrates
($4

e . \ . % . X :
to zero since q(p is an even function. Considering the components

we have

m \ Q- -1/2
Sl ErEAl € Dpl/g(

and for the other components

-

- \ -1

L n) €8

oy ij ’,E,- | opl

Combining all of the above we have
- \Z E “\ ~
x
ll ) > I | e
(7.18) G2, Esn) = Tz, 8,mF + F Gz &,

~ =

A ) . e
where zll\z,g,q) [ Dpl/? and G(z,&,n) ¢ upl/?
(7.18) and (7.15) imply
(7.19) Re(w,Gw) = Re(w,Tw) + he\u,Illu\ + Re(w,Gw
e, |ul® - ¢ |wl®
1 0 2 -1/2
which proves Theorem 7.2.




i
|
|
|

1

We next prove another G8rding inequality.

) - v O »’—
fheorem (.5. If P(z,g,']J € Sp and Pl\z;E,n) = Plz,§,q)
=S DL e o
then for each > 0, > 0 there is a constant Cr > 0
\ \ w; 1 ‘?
R : ) (¢ = ) lwl€ - o
Re (w,P(z,D,n)w) > N |w o~ Splwl_

Proof. We modify Taylor's proof in [ 1Y p.3%] to allow matrix

symbols. We show that we can write

o Al 7 #
Re P = = (P + B DG
2 ST
TP £ e p=1lf _ 5 £
where ke 4 upp and Dr € Sp,_ . panee PBlzZ, .0

its adjoint P4{z,6,ﬂ\ is also in 5p: and by (7.1)

% ) D - ) i \
BAZ LN = PREE0) + PG, Es )

where P € Sp;p.

Let

kP(ZJ&:’]‘ + !;*(Z’gw;']l‘ t M (.577]\'—0 - (e

P,)(Z}g:q) = o

1
2
where M 1is chosen so that

(T-21) rukz,g,q‘

)
20

=

Sp’

e

?




g

that P B Land &P P . Let 3 \Z5E,0 Z5E,N .

by (T.21 ). € Sp‘ and since B B

M |
“
.

where

Now assume that we have constructed B.(z,E,n) ¢ Sp for n
such that
et == ‘L . ¥ +* +* .
il == I ‘ = o 3 + so e ) + .
£ ( ( n-1 n-1

We take B (z,€,n) as the solution to
!

Since B. > Ve, B (z,6,m) is & well-defined matrix, and because

B. € Sp and Fr € Sp_ " we have B € Sp = . Also since I .
‘ Y ; i




* S R
and so Bn R e LJP.M 1) :

s llow it is easy to see that |
9,

holds if n is replaced by n+l. let D =B + °*+ + B

then from (7.22) we have

- 5 ]_ e ks
Re(w,Pw) = = ((w,Pw) + (w,P w))
=
2 e \
= o, = 'wgﬁ + ID w? + (w,P w)
0 ) n n
; o \ “I'é R !WIE
= | T -, o - -
= 0 50 n' l-pp/o

laking \nﬁ“/E > r we have proved Theorem 7.3.

T.4. Proof of Theorem L.8.

In this section we prove Theorem 4.8. First we relate the

used in Chapter IV to those used in this chapter.

=
o]
3
&}

For two vector-valued functions u and v

/ t =Nt
ku,v‘,,l = (e "y, ey

and for a pseudo-differential cperator P, (W,Pw‘q will mean

(e-th, Ple W) .

‘ (S0 to be accurate we should write

(w, e p(e M)

in place of (w,Fw‘q.‘
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We now prove Theorem L4.5. Applying Theorem 7.2 and using

(7.11) we have

Re (w,R(z,D,n) N(z,D,n)w)
|
: a2 1/2 .2 2
e HIALD, ) §S5 4 o i i
_ cyllalD,m qu clH 5 qu CQUV,q
P 5 . S e
2ole, - oy Re (u, u)q e - oy ’V‘W

By taking n sufficiently large we can make the coefficient of
n2
<jq

we note that we can replace R(z,t,n) by

Ilv larger than % coq. To handle the other term on the right

o ¢
A b o1
Ro1 Fop

where d > 0, and all the properties of R(z,%,7) still hold.

(z,€,7) gl c

Moreover, Re Rll(z,g,n) Ny Nt

so we can apply

Theorem 7.3 to obtain

Re(u,Rll(z,D,n) Nll(z,D,n)u)n
ke o .
> (g, = € =cf " )| Relu,zu)

For proper choice of d we then have

- « 5* 2
Re (w, Rl W)ﬂ > c(Re(u,uu)n + nHqu}




> change notation to that of Chapter IV replace u by
3

! u,Z o+ Pg Av)) and we easily obtain (4.28).
H 'o obtain (4.29) we note that for any vectors w and g
such that
Tlz,E,nlw = g
we have

.
lel

t. i 2
wR(z,E,nw > e, [g]” + cglw]

But this is equivalent to

rom the definition of T(z,&,n) in (4.7) and Lemma 7.1 we have

) “i/?' So we may apply Theorem 7.3 and we have

. 5 =t 1 2
Re (w,R(z,D,n?w>q > - lRe(w,L Tqu + (02 - < - ﬁ) IWIq

2 -1 -1/2y .2
‘°1’T"’1q R e YW‘,] }

v

We have used
-1/2

1t”‘ ) ) a
T (z;Esn) -~ Tlz;E;0) € 091/2

from 7.1). For 17 sufficiently large we have (4.28).

This completes the proof of Theorem 4.8&.
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APPENDIX

In this appendix we present a few examples to illustrate the
use of the results of this thesis. The first four examples treat
constant coefficient problems on a half-space. The fifth example
illustrates how to deal with variable coefficient problems on a
bounded domain with smooth boundary.

For each example, the quantities wu, v,vl, vg will be scalars

and for the half-space we will take I?% = ((x,¥):x >0, y € R}.

Fxample 1. The equations are

uw, = = + 8V
v xx Yy ¥
v, = bu. * v
t X X

The boundary condition is

kyu + kv = gly,t) .
We will use Theorem 4.5 to establish well-posedness. lNote that we
have one boundary condition since p +q =1+ 0 =1 (Assumption 4.5'.
a) We first check for parabolic eigensolutions (Definition 4.5'.

If (u,v.) 1is a parabolic eigensolution, then v. = O since q = O.

0 0

The equation for u is

95

@b

o —————— Y

s




u, must be non-zero and satisfy

if it is an eigensolution. We see that there are no eigensolutions

of parabolic type if and only if kl # 0.

We now check for eigensolutions of hyperbolic type (Definition L.6).

[f {u,v’ 1s a hyperbolic eigensolution, it satisfies
0 = 1 - u)?u
pod
eV = by + ¥
x X
(2]
The L°(R_,) solutions are
| |
-lwix
u = u.e
0
blwl e-lwlx
s + | uO
The boundary condition is
b |w
Ke¥i, * K = 1 ) O .
&5 2< g + jw] 0

Assuming that kl ¥ 0, we have




freit baty

A I A

Kk
S—(—l;éib-l> ;(DI :
gl

Re s > O if and only if Re(k,/k,)o > 1, and so the system is

o-well-posed if and only if Re(k?/kl)b < 1, with kl £ 0.

E y = &
xample 2 ut uxx uyy
vl -1 O vl (D) vl (
T = + ¢ u
Ve 2 2 X
v + o 1 v A0 v /] 0
X y

with boundary conditions

it
VIS ky,t\

u o+ kv = & (y,t)

We will use Theorem 4.5 again and note that Assumption 4.1 is satisfied

since p=1 and q = 1. |
a) If (u,vo\ is an eigensolution of parabolic type, then ;
1 l
V P
¥a = b
0
: 0
and u satisfies
su=u_ -0y .
XX
-0x
We have u = uoe and the boundary conditions are




There are obviously no parabolic eigensolutions.

b) An eigensolution of hyperbolic type must solve:

n
n
no

[t is easily seen that the solutions are:

u s 5
N\,
v1 1 | iw
P =AX o ﬁﬁl_ 5 e-lwlx
2 0 iw 2 0
v m S S=- ‘UJ!

for s ¥ 0, and when s = O,

1 Lois | iw f
i =v 4 FEd L P 3 + x e-lu‘x.
o 0 o 2y

v x m -lwl

We have set A = (&° + 52)1/?.

<

—~

The boundary condition for s # O is

18]
(®]




Solving for s, we have

(SE i (DE) + !(u; + |w|kb = 0",
or, since ® £ 0,
(F%T)Q &1 = (1 + kb)

g 22 + 1

We obtain the same equation for s = 0. The map

maps the plane Re z > O onto itself, so we have that the system

is 0-well-posed if and only if

Re(1 + kb) > O.

We now present two examples illustrating the use of Theorem 5.1

for strongly 0-well-posed systems.

Example 3. We take the equations

=W ety t av {
7 XX vy
g
Y, = bux e é‘
1
with boundary conditions i
L]
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Ll = ( )
uX .lv gl Yt

et b= gg(y,t) X

lote that Assumption 4.1 is satisfied.

[ y )

&) Tf ‘\u.v(\\\r is a strong parabolic eigensolution (Definition 5.2/,
\J

then

-0x / 2 1/2

U = {g.e ’ \’J:((.D'Q-s)/
0

and

-ou. + h.v,. =0

0 LG,

uuuc + hQVO = 00 5

If h, = O we have an eigensolution with @ = 0 and Vs = hlvn/un.

n

- n, 2

We see that there are no strong eigensolutions of parabolic type
if and only if

h2¥o
h. @
Re(ﬁl) e L
2

b) Checking for strong eigensolutions of hyperbolic type (Definition 5.

we solve -
0 =u - @y + aiwv
XX

100




The solutions are

v = v.e o
0
X - Im | x aiw ~SX
u = ue - T W6

when s £ |o|, and

o e-]mlx , _aio xe-lmlx

BEiy sTw] Yo

when s = fmf

The boundary conditions are satisfied if

The "+" sign depends on the sign of ®. The system is strongly

o-well-posed if and only if all of the following are satisfied
hy, # 0,
h, 2

Re (fli) > =1y
2

and

101




Lxample 4. We take the same equations as in Example 2.

1 20 \ 01 1 0

W - ¥ + ¥ + ux )
i v/ g 2 v A - b
B -+ X > :lr

E but with the boundary conditions
1
? U.X i hlV = gl
2 2
s U a0 S i — ;
uy 1? g

1s easy Lo see that the condition that no strong parabolic eigen-
solutions exist is hl ¥ 0.

If (u,v) 1is a strong hyperbolic eigensolution,

1 A =g e-‘wlx

: 0

1 n & 1

3 v =

4 o = Wy el R = (&? ¢ 52)1/2)
| v _iw

! S+A

The boundary condition is satisfied if

; h
i S+7\:}jlg|w!)
1

S+ (5)24_1:1'_1_2_
Tol © V ol B
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The map 2 —=> w = 2 + VZd + 1 maps the plane Re z > O

onto the region Re w > O, le > 1. Thus the system isstrongly

e ——

0-well-posed if and only if

g hl £ 0,
' and
h,
Re 52_ <G
l 3
or i
4:)
n ' |
: 2 {
Bl
For our fifth example we apply the results of Examples 1
and 3.

Example 5. We take Q to be an annulus in RE,

((r,0)t0<ry<r<r, 0<0 <om 1

0

and our equations are

o Lo alr,0,t) ov
& : r oA

o o
‘, -b(r,a,t\ %-g}:‘n

<
i

for our boundary conditions we take for r = r

O)




and for r =r

kl\P,t)u + k?\“,t’v S

«#e assume that all coefficients tend to constants as t

s = 10 ote a on
r=ry :? becomes - %% in the notation of Definition £.1.
From Examples 1 and 3 we have sufficient conditions for the
system to be well-posed:
KlRB,t‘ 7,
ke(e,t3 \
R b gt
ne W 1(1‘1; ‘) 2l )
n,(6,t) £ 0,
B, (8,6)\°
Re m > -1,
[ a(ro,e,t)
i h,(0,t] + ih, (8,¢) % Lo
- al(r. 6,t)
Re S Lt |
© | ny9,t) - in, (6,¢) :
and these inequalities must also be satisfied in the limit as t - =.

Using the techniques of Chapter VI we obtain the estimate
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¥
3

¥

y
E

¥
3

#
j

where

” * i ,. 3
) | e e w |
[[all FvE L+ sl + |ul v et o+ Il
up B My »© b e/ N2 Y=Y
0 (5 010 s
< C(!el'if] T g.;lf] s igllf] iy
P O bl O ) 1_

-

0 = {'\r,G":rOSr<r - €}
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